Home
Class 12
MATHS
If z=(a+i b)^5+(b+i a)^5 , then prove th...

If `z=(a+i b)^5+(b+i a)^5` , then prove that `R e(z)=I m(z),w h e r ea ,b in Rdot`

Text Solution

Verified by Experts

Let a = r cos `theta`, b = r `sin theta`
Then `z = (a+ib)^(5) + (b + ia)^(5)`
`r^(5){(cos theta + isin theta)^(5) + (sin theta + cos theta)^(5) + (sin theta + icos theta)^(5)}`
`=r^(5)[(cos 5theta + isin 5theta)+{cos((pi)/(2)-theta)+isin((pi)/(2) -theta)}^(5)]`
`r^(5)[(cos 5theta + isin 5theta)+cos 5((pi)/(2) - theta)+isin5((pi)/(2) - theta)]`
`=r^(5) [(cos 5theta + sin 5theta)(1+i)]`
Clearly Re(z) = Im(z)` = r^(5) (cos 5theta + sin 5theta)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.8|11 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.9|8 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.6|10 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

If z=(a+ib)^(5)+(b+ia)^(5) then prove that Re(z)=Im(z), where a,b in R.

If z=re^(i theta), then prove that |e^(iz)|=e^(-r sin theta)

Let R be the relation of the set Z of all integers defined by : R = {(a,b) : a, b in Z and (a-b) " is divisible by " n in N} Prove that : (i) (a,a) in R for all a in Z (ii) (a,b) in R rArr (b,a) in R for all a, b in Z (iii) (a,b) in R and (b,c) in R rArr (a,c) in R " for all" a,b,c in Z

If |z + i| = |z - i|, prove that z is real.

If |z-3i| ltsqrt5 then prove that the complex number z also satisfies the inequality |i(z+1)+1| lt2sqrt5 .

If |(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y)^2(b-z)^2(c-x)^2(c-y)^2(c-a)^2|=0 and vectors vec A , vec B ,a n d vec C , w h e r e vec A=a^2 hat i+a hat j+ hat k , etc, are non-coplanar, then prove that vectors vec X , vec Ya n d vec Z ,w h e r e vec X=x^2 hat i+x hat j+ hat k , etc. may be coplanar.