Home
Class 12
MATHS
If a ,b ,c are nonzero complex numbers o...

If `a ,b ,c` are nonzero complex numbers of equal moduli and satisfy `a z^2+b z+c=0,` hen prove that `(sqrt(5)-1)//2lt=|z|lt=(sqrt(5)+1)//2.`

Text Solution

Verified by Experts

`|a| = |b| = |c| = r `
Again ` az^(2) + bz = - c `
` rArr |c| = |-az^(2) - bz| le |a||z^(2)| + |b| |z| `
` rArr r le r |z|^(2) + r |z| `
` rArr |z|^(2) + |z| - 1 ge 0 `
` rArr |z| ge (sqrt5 - 1 )/( 2 ) " " (1)`
Also from ` a z ^(2) = - bz - c,`
`|z|^(2) - |z| - 1 le 0 `
` rArr 0 lt |z| le (sqrt5 + 1 )/(2) " " ` (2)
From (1) and (2) ,
` (sqrt5 - 1 )/(2) le |z| le (sqrt 5 + 1 )/( 2 )`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.9|8 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.10|10 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.7|6 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are nonzero complex numbers of equal moduli and satisfy az^(2)+bz+c=0 hen prove that (sqrt(5)-1)/2<=|z|<=(sqrt(5)+1)/2

The nonzero complex number Z satisfying Z=iZ^(2) is

Let a ,b ,a n dc be any three nonzero complex number. If |z|=1a n d' z ' satisfies the equation a z^2+b z+c=0, prove that a a =c c a n d|a||b|=sqrt(a c( b )^2)

If z_(1) and z_(2) are two complex numbers such that |z_(1)| lt 1 lt |z_(2)| , then prove that |(1- z_(1)barz_(2))//(z_(1)-z_(2))| lt 1

If z_1 and z_2 are two complex numbers such that |z_1|lt1lt|z_2| then prove that |(1-z_1barz_2)/(z_1-z_2)|lt1

Modulus of nonzero complex number z satisfying bar(z)+z=0 and |z|^(2)-4zi=z^(2) is

Find a complex number z satisfying the equation z+sqrt(2)|z+1|+i=0

If z_1,z_2 are nonzero complex numbers then |(z_1)/(|z_1|)+(z_2)/(|z_2|)|le2 .

Find the complex number z satisfying Re(z^(2)=0),|z|=sqrt(3)

If a complex number z satisfies z + sqrt(2) |z + 1| + i=0 , then |z| is equal to :