Home
Class 12
MATHS
If z = (3)/( 2 + cos theta + I sin thet...

If `z = (3)/( 2 + cos theta + I sin theta)`, then prove that z lies on the circle.

Text Solution

Verified by Experts

Given `z = (3)/(2 + cos theta + i sintheta)`
` rArr cos theta + i sin theta = (3)/(z) - 2 = (3-2z)/(z)`
`rArr 1= (|3-2z|)/(|z|)" "["taking modulus"]`
`rArr (|z-(3)/(2)|)/(|z|) = (1)/(2)`
Therefore, locus of z is circle.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.10|10 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.11|6 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.8|11 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

If |z-1| + |z + 3| le 8 , then prove that z lies on the circle.

If Z = (A sin theta + B cos theta)/(A + B) , then

If (sin 3theta)/(cos 2theta)lt 0 , then theta lies in

if 3sin theta+5cos theta=5 then prove that 5sin theta-3cos theta=|3|

If z = (1+cos theta + i sin theta)/(sin theta + i(1+cos theta))(0 lt theta lt pi//2) then |z| equals

The real part of z = (1)/(1-cos theta + i sin theta) is

If sqrt(3)cos theta-sin theta is positive,then theta lies between