Home
Class 12
MATHS
Given alpha,beta, respectively, the fift...

Given `alpha,beta,` respectively, the fifth and the fourth non-real roots of units, then find the value of `(1+alpha)(1+beta)(1+alpha^2)(1+beta^2)(1+alpha^4)(1+beta^4)`

Text Solution

Verified by Experts

The correct Answer is:
0

As ` alpha` is the fifth nonreal root of unity, we have `alpha^(4) + alpha^(3) + alpha^(2) + alpha + 1=0`
`beta ` is the fouth nonreal root of unity . Therefore,
`beta^(3) + beta^(2) + beta + 1=0`
Now, `( 1 + alpha )(1 + alpha^(2))(1 + alpha^(4))(1+ beta)(1+ beta^(2))(1 + beta^(3))`
`= (1+ alpha + alpha^(2)+ alpha^(3) ) (1+alpha^(4)) (1+ beta + beta^(2) + beta^(3))(1+ beta^(3)) (because 1+ beta + beta^(2) + beta^(3) = 0)`
`= 0`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise (Single)|89 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise (Multiple)|49 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.10|10 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the complex cube roots of unity, then what is the vlaue of (1+alpha)(1+beta)(1+alpha^(2))(1+beta^(2)) ?

If alpha and beta are the roots of the equation x^(2)-x-4=0 , find the value of (1)/(alpha)+(1)/(beta)-alpha beta :

If alpha and beta be the roots of the equation x^(2)+3x+1=0 then the value of ((alpha)/(1+beta))^(2)+((beta)/(alpha+1))^(2)

Consider the equation x^2-5x+2=0 with roots alpha, beta , then the value of alpha+beta+alpha^(-1)+beta^(-1)=?

If alpha and beta are two roots of x^(4)-x^(3)+1=0 then the value of (alpha^(3)(1-alpha))/(beta^(3)(1-beta))=

If alpha,beta are the roots of 1+x+x^(2)=0 then the value of alpha^(4)+beta^(4)+alpha^(-4)beta^(-4) =

If alpha and beta are roots of the equation ax ^(2) + bx + c, then find the value of the (1)/(alpha) + (1)/(beta).

x^2+3^(1/4)x+sqrt3=0 where alpha and beta are roots of equation then find the value of alpha^96(alpha^12-1)+beta^96(beta^12-1)

if alpha and beta are imaginary cube root of unity then prove (alpha)^(4)+(beta)^(4)+(alpha)^(-1)*(beta)^(-1)=0