Home
Class 12
MATHS
If the equation z^4+a1z^3+a2z^2+a3z+a4=0...

If the equation `z^4+a_1z^3+a_2z^2+a_3z+a_4=0` where `a_1,a_2,a_3,a_4` are real coefficients different from zero has a pure imaginary root then the expression `(a_1)/(a_1a_2)+(a_1a_4)/(a_2a_3)` has the value equal to

A

0

B

1

C

-2

D

2

Text Solution

Verified by Experts

The correct Answer is:
B

Let xi be the root where `x ne 0` and `x in R`
`x^(4) - a_(1)x^(3)I - a_(3)x^(2) + a_(3)xi + a_(4) = 0" "(1)`
`rArr x^(4) - a_(2)x^(2) + a_(4) = " "(2)`
and `a_(1)x^(3) - a_(3)x =0`
Form Eq. (2),
`a_(1)x^(3) - a_(3) = 0`
`rArr x^(2) = a_(3)//a_(1)` (as `x ne 0`)
Putting the value of `x^(2)` in Eq.(1), we get
`(a_(3)^(2))/(a_(1)^(2))- (a_(2)a_(3))/(a_(1))+a_(4) = 0`
`rArr a_(3)^(2) + a_(4) a_(1)a_(3)`
`rArr (a_(3))/(a_(1)a_(2))+(a_(1)a_(4))/(a_(2)a_(3))= 1` (dividing by `a_(1)a_(2)a_(3))`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise (Multiple)|49 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise (Comprehension)|34 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.11|6 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

If the equation z^(4)+a_(1)z^(3)+a_(2)z^(2)+a_(3)z+a_(4)=0 where a_(1),a_(2),a_(3),a_(4) are real coefficients different from zero has a pure imaginary root then the expression (a_(1))/(a_(1)a_(2))+(a_(1)a_(4))/(a_(2)a_(3)) has the value equal to

If a_1,a_2,a_3 and a_4 be any four consecutive coefficients in the expansion of (1+x)^n , prove that a_1/(a_1+a_2)+a_3/(a_3+a_4)= (2a_2)/(a_2+a_3)

If (a_2a_3)/(a_1a_4) = (a_2+a_3)/(a_1+a_4)=3 ((a_2 -a_3)/(a_1-a_4)) then a_1,a_2, a_3 , a_4 are in :

If a_1, a_2, a_3, .... a_4001 are terms of an A.P. such that 1/(a_1a_2)+1/(a_2a_3)+1/(a_3a_4)+......1/(a_4000a_4001)=10 and a_2+a_4000=50, then |a_1-a_4001| is equal to

Let the sequencea_1,a_2....a_n form and AP. Then a_1^1-a_2^2+a_3^2-a_4^2... is equal to

In an arithmetic sequence a_1 + a_3 = 12 and a_4+a_6 = 24 . Find the values of a and d

Evaluate: /_\ |[1+a_1, a_2, a_3],[a_1, 1+a_2, a_3],[a_1, a_2, 1+a_3]|

CENGAGE-COMPLEX NUMBERS-Exercise (Single)
  1. Dividing f(z) by z- i, we obtain the remainder i and dividing it by z...

    Text Solution

    |

  2. The complex number sin(x)+icos(2x) and cos(x)-isin(2x) are conjugate t...

    Text Solution

    |

  3. If the equation z^4+a1z^3+a2z^2+a3z+a4=0 where a1,a2,a3,a4 are real co...

    Text Solution

    |

  4. If z1, z2 in C , z1^2 in R , z1(z1^2-3z2^2)=2 and z2(3z1^2-z2^2)=11,...

    Text Solution

    |

  5. If a^2+b^2=1 then (1+b+i a)/(1+b-i a)=

    Text Solution

    |

  6. If z(1+a)=b+i ca n da^2+b^2+c^2=1, then [(1+i z)//(1-i z)= (a+i b)/(1...

    Text Solution

    |

  7. If a and b are complex and one of the roots of the equation x^(2) +...

    Text Solution

    |

  8. If z =(lambda+3)+isqrt((5-lambda^2)) ; then the locus of z is

    Text Solution

    |

  9. Let z=1-t+isqrt(t^2+t+2), where t is a real parameter.the locus of the...

    Text Solution

    |

  10. If z(1) and z(2) are the complex roots of the equation (x-3)^(3) + 1=...

    Text Solution

    |

  11. Which of the following is equal to root(3)(-1)?

    Text Solution

    |

  12. If x^2+x+1=0 then the value of (x+1/x)^2+(x^2+1/(x^2))^2+...+(x^27+1/(...

    Text Solution

    |

  13. Sum of common roots of the equations z^(3) + 2z^(2) + 2z + 1 =0 and z...

    Text Solution

    |

  14. If 5x^(3) +Mx+ N, M,N in R is divisible by x^(2) + x+1, then the va...

    Text Solution

    |

  15. If z=x+i ya n dx^2+y^2=16 , then the range of ||x|-|y|| is [0,4] b. [0...

    Text Solution

    |

  16. If z is a complex number satisfying the equaiton z^(6) - 6z^(3) + 25 ...

    Text Solution

    |

  17. If 8i z+12 z^2-18 z+27 i=0,t h e n |z|=3/2 b. |z|=2/3 c.|z|=1 d. |z|...

    Text Solution

    |

  18. Let z1a n dz2 be complex numbers such that z1!=z2 and |z1|=|z2|dot If ...

    Text Solution

    |

  19. |z1|=|z2| and arg((z1)/(z2))=pi, then z1+z2 is equal to

    Text Solution

    |

  20. If for complex numbers z1 and z2, arg(z1) -arg(z2)=0 then |z1-z2| is...

    Text Solution

    |