Home
Class 12
MATHS
If for complex numbers z1 and z2, arg(z...

If for complex numbers `z_1 and z_2, arg(z_1) -arg(z_2)=0` then `|z_1-z_2|` is equal to

A

`|z_(1)|+|z_(2)|`

B

`|z_(1)| - |z_(2)|`

C

`||z_(1)|-|z_(2)||`

D

0

Text Solution

Verified by Experts

The correct Answer is:
C

We have
`|z_(1)-z_(2)|^(2)=|z_(1)|^(2)+|z_(2)|^(2)-2|z_(1)||z_(2)|cos(theta_(1)-theta_(2))`
where `theta_(1)=arg(z_(1))and theta_(2)=arg(z_(2))`. Given,
`arg(z_(1))-arg(z_(2))=0`
`rArr|z_(1)-z_(2)|^(2)=|z_(1)|^(2)+|z_(2)|^(2)-2|z_(1)||z_(2)|`
`=(|z_(1)|-|z_(2)|)^(2)`
`rArr|z_(1)-z_(2)|=||z_(1)|-|z_(2)||`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise (Multiple)|49 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise (Comprehension)|34 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.11|6 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

If for complex numbers z_(1) and z_(2),arg(z_(1))-arg(z_(2))=0 then |z_(1)-z_(2)| is equal to

If for complex numbers z_(1) and z_(2) , arg z_(1)-"arg"(z_(2))=0 then |z_(1)-z_(2)| is equal to

If for complex numbers z_(1) and z_(2)arg(z_(1))-arg(z_(2))=0, then show that |z_(1)-z_(2)|=|z_(1)|-|z_(2)||

If the complex number Z_(1) and Z_(2), arg (Z_(1))- arg(Z_(2)) =0 . then show that |z_(1)-z_(2)| = |z_(1)|-|z_(2)| .

If z_1 and z_2 are two nonzero complex numbers such that |z_1-z_2|=|z_1|-|z_2| then arg z_1 -arg z_2 is equal to

If z_1 and z_2 are two non zero complex number such that |z_1+z_2|=|z_1|+|z_2| then arg z_1-argz_2 is equal to (A) - pi/2 (B) 0 (C) -pi (D) pi/2

|z_(1)|=|z_(2)| and arg((z_(1))/(z_(2)))=pi, then z_(1)+z_(2) is equal to

If for the complex numbers z_(1) and z_(2)|z_(1)+z_(2)|=|z_(1)-z_(2)|, then Arg(z_(1))-Arg(z_(2)) is equal to

CENGAGE-COMPLEX NUMBERS-Exercise (Single)
  1. Let z1a n dz2 be complex numbers such that z1!=z2 and |z1|=|z2|dot If ...

    Text Solution

    |

  2. |z1|=|z2| and arg((z1)/(z2))=pi, then z1+z2 is equal to

    Text Solution

    |

  3. If for complex numbers z1 and z2, arg(z1) -arg(z2)=0 then |z1-z2| is...

    Text Solution

    |

  4. If |z1/z2|=1 and arg (z1z2)=0 , then

    Text Solution

    |

  5. Suppose A is a complex number and n in N , such that A^n=(A+1)^n=1, t...

    Text Solution

    |

  6. Let z,w be complex numbers such that barz+ibarw=0 and arg zw=pi Then a...

    Text Solution

    |

  7. Let z,w be complex numbers such that barz+ibarw=0 and arg zw=pi Then a...

    Text Solution

    |

  8. If z = (3+ 7i) (a +ib) where a,b in in Z- {0}, is purely imaginary , ...

    Text Solution

    |

  9. If (costheta +isintheta)(cos2theta +isin2theta).....(cosntheta + isinn...

    Text Solution

    |

  10. Given z=(1+isqrt(3))^(100), then [R E(z)//I M(z)] equals 2^(100) b. 2^...

    Text Solution

    |

  11. The expression [(1+sin(pi/8)+icos(pi/8))/(1+sin(pi/8)-icos(pi/8))]^8 i...

    Text Solution

    |

  12. The number of complex numbers z satisfying |z-3-i|=|z-9-i|a n d|z-3+3i...

    Text Solution

    |

  13. P(z) be a variable point in the Argand plane such that |z|=m in i mu m...

    Text Solution

    |

  14. if |z^2-1|=|z|^2+1 then z lies on

    Text Solution

    |

  15. If z=x+iy (x, y in R, x !=-1/2), the number of values of z satisfying ...

    Text Solution

    |

  16. Number of solutions of the equation z^3+[3(barz)^2]/|z|=0 where z is a...

    Text Solution

    |

  17. Number of ordered pairs(s) (a, b) of real numbers such that (a+ib)^200...

    Text Solution

    |

  18. The equation az^(3) + bz^(2) + barbz + bara = 0 has a root alpha, wh...

    Text Solution

    |

  19. If k>0, |z|=\w\=k, and alpha=(z-bar w)/(k^2+zbar(w)), then Re(alpha) ...

    Text Solution

    |

  20. z1a n dz2 are two distinct points in an Argand plane. If a|z1|=b|z2|(w...

    Text Solution

    |