Home
Class 12
MATHS
If cos alpha + 2 cos beta +3 cos gamma ...

If `cos alpha + 2 cos beta +3 cos gamma = sin alpha + 2 sin beta + 3 sin gamma y = 0`, then the value of `sin 3alpha + 8 sin 3beta + 27 sin 3gamma ` is

A

`sin(a+ b+ gamma)`

B

`3 sin (alpha + beta + gamma)`

C

` 18 sin(alpha + beta + gamma)`

D

`sin(alpha+ beta + gamma)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \cos \alpha + 2 \cos \beta + 3 \cos \gamma = \sin \alpha + 2 \sin \beta + 3 \sin \gamma = 0 \] We need to find the value of: \[ \sin 3\alpha + 8 \sin 3\beta + 27 \sin 3\gamma \] ### Step 1: Express the given equation in terms of complex numbers We can express the cosine and sine functions in terms of complex exponentials: \[ e^{i\alpha} = \cos \alpha + i \sin \alpha \] \[ e^{i\beta} = \cos \beta + i \sin \beta \] \[ e^{i\gamma} = \cos \gamma + i \sin \gamma \] Thus, we can rewrite the equation as: \[ e^{i\alpha} + 2e^{i\beta} + 3e^{i\gamma} = 0 \] ### Step 2: Identify the real and imaginary parts From the equation, we can separate the real and imaginary parts: - Real part: \(\cos \alpha + 2 \cos \beta + 3 \cos \gamma = 0\) - Imaginary part: \(\sin \alpha + 2 \sin \beta + 3 \sin \gamma = 0\) ### Step 3: Use the identity for cubes We can use the identity for the sum of cubes: \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - xz - yz) \] In our case, let: - \(x = \cos \alpha\) - \(y = 2 \cos \beta\) - \(z = 3 \cos \gamma\) Since \(x + y + z = 0\), we can apply the identity: \[ x^3 + y^3 + z^3 = 3xyz \] ### Step 4: Calculate \(x^3 + y^3 + z^3\) Now, we calculate: \[ \cos^3 \alpha + 8 \cos^3 \beta + 27 \cos^3 \gamma = 3(\cos \alpha)(2 \cos \beta)(3 \cos \gamma) \] ### Step 5: Find the value of \( \sin 3\alpha + 8 \sin 3\beta + 27 \sin 3\gamma \) Using the sine triple angle formula: \[ \sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta \] We can express: \[ \sin 3\alpha = 3 \sin \alpha - 4 \sin^3 \alpha \] \[ \sin 3\beta = 3 \sin \beta - 4 \sin^3 \beta \] \[ \sin 3\gamma = 3 \sin \gamma - 4 \sin^3 \gamma \] Substituting these into our expression gives: \[ \sin 3\alpha + 8 \sin 3\beta + 27 \sin 3\gamma = (3 \sin \alpha + 24 \sin \beta + 81 \sin \gamma) - 4(\sin^3 \alpha + 8 \sin^3 \beta + 27 \sin^3 \gamma) \] ### Step 6: Substitute back using the earlier results Since we know that: \[ \sin \alpha + 2 \sin \beta + 3 \sin \gamma = 0 \] We can conclude that: \[ \sin 3\alpha + 8 \sin 3\beta + 27 \sin 3\gamma = 18 \sin(\alpha + \beta + \gamma) \] ### Final Result Thus, the value of \( \sin 3\alpha + 8 \sin 3\beta + 27 \sin 3\gamma \) is: \[ \boxed{0} \]

To solve the problem, we start with the given equation: \[ \cos \alpha + 2 \cos \beta + 3 \cos \gamma = \sin \alpha + 2 \sin \beta + 3 \sin \gamma = 0 \] We need to find the value of: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise (Multiple)|49 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise (Comprehension)|34 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.11|6 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

If cos alpha + cos beta + cos gamma = 3 then sin alpha + sin beta + sin gamma =

If cos alpha+2cos beta+3cos gamma=sin alpha+2sin beta+3sin gamma=0 then the value of sin3 alpha+8sin3 beta+27sin3 gamma is sin(a+b+gamma)b.3sin(alpha+beta+gamma) c.18sin(alpha+beta+gamma) d.sin(alpha+2 beta+3)

cos alpha+cos beta+cos gamma=0sin alpha+sin beta+sin gamma=0 then the value of sin^(4)alpha+sin^(4)beta+sin^(4)gamma

If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then (a) sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma = (3) / ( 2) (b) sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma = (3) / (4) (c) cos ^ (alpha) + cos ^ (2) beta + cos ^ (2) gamma = (3) / (2) (d) cos ^ (2) alpha + cos2 beta + cos2 gamma = -1

If cos alpha+cos beta+cos gamma=0 and also sin alpha+sin beta+sin gamma=0 then prove that

If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then cos ^ (2) alpha + cos ^ (2) beta + cos ^ (2) gamma is

If alpha + beta + gamma=pi, then the value of sin ^(2) alpha + sin ^(2) beta - sin^(2) gamma is equal to

If cos alpha + cos beta+ cos gamma = 0 = sin alpha + sin beta+sin gamma show that sin^(2)alpha + sin^(2) beta + sin^(2) gamma =cos^(2)alpha +cos^(2) beta + cos^(2) gamma =3/2

CENGAGE-COMPLEX NUMBERS-Exercise (Single)
  1. z1a n dz2 are two distinct points in an Argand plane. If a|z1|=b|z2|(w...

    Text Solution

    |

  2. If z is a comple number such that -(pi)/(2) lt "arg z" le (pi)/(2), ...

    Text Solution

    |

  3. If cos alpha + 2 cos beta +3 cos gamma = sin alpha + 2 sin beta + 3 s...

    Text Solution

    |

  4. If alpha,beta be the roots of the equation u^2-2u+2=0 and if cottheta...

    Text Solution

    |

  5. If z=(i)^{(i)^(i)} w h e r e i=sqrt(-1),t h e n|z| is equal to

    Text Solution

    |

  6. lf z = ilog(2-sqrt(-3)), then cos z =

    Text Solution

    |

  7. If |z|=1, then the point representing the complex number -1+3z will li...

    Text Solution

    |

  8. The locus of point z satisfying R e(1/z)=k ,w h e r ek is a nonzero re...

    Text Solution

    |

  9. If z is complex number, then the locus of z satisfying the condition |...

    Text Solution

    |

  10. The greatest positive argument of complex number satisfying |z-4|=R e(...

    Text Solution

    |

  11. If ta n dc are two complex numbers such that |t|!=|c|,|t|=1a n dz=(a t...

    Text Solution

    |

  12. If z^2+z|z|+|z^2|=0, then the locus z is a. a circle b. a straight ...

    Text Solution

    |

  13. Let C1 and C2 are concentric circles of radius 1and 8/3 respectively ...

    Text Solution

    |

  14. If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z,...

    Text Solution

    |

  15. If |z-1|lt=2a n d|omegaz-1-omega^2|=a (w h e r eomegai sac u b erooto...

    Text Solution

    |

  16. If |z^2-3|=3|z| , then the maximum value of |z| is 1 b. (3+sqrt(21))/2...

    Text Solution

    |

  17. If |2z-1|=|z-2|a n dz1, z2, z3 are complex numbers such that |z1- (alp...

    Text Solution

    |

  18. If z1 is a root of the equation a0z^n+a1z^(n-1)++a(n-1)z+an=3,w h e r ...

    Text Solution

    |

  19. If |z|<<sqrt(2)-1,t h e n|z^2+2zcosalpha|i s a. less than 1 b. sqr...

    Text Solution

    |

  20. Let |Z(r) - r| le r, for all r = 1,2,3….,n. Then |sum(r=1)^(n)z(r)| is...

    Text Solution

    |