Home
Class 12
MATHS
Let |Z(r) - r| le r, for all r = 1,2,3…....

Let `|Z_(r) - r| le r`, for all `r = 1,2,3….,n`. Then `|sum_(r=1)^(n)z_(r)|` is less than

A

n

B

2n

C

n(n+1)

D

`(n(n+1))/(2)`

Text Solution

Verified by Experts

The correct Answer is:
C

`|sum_(r=1)^(n)z_(r)|lesum_(r=1)^(n)|z_(r)|lesum_(r=1)^(n)|z_(r)-r|+sum_(r=1)^(n)rle2sum_(r=1)^(n)r`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise (Multiple)|49 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise (Comprehension)|34 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.11|6 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

sum_(r=1)^(n)(3^(r)-r)=

sum_(r=1)^(n)(C(n,r))/(r+2) is equal to

Evaluate: sum_(r=1)^n(3^r-2^r)

If sum_(r=1)^(n)I(r)=2^(n)-1 then sum_(r=1)^(n)(1)/(I_(r)) is

sum_(r=1)^(n)r^(3)=f(n) then sum_(r=1)^(n)(2r-1)^(3) is equal to

If sum_(r=1)^(n) r=210, then : sum_(r=1)^(n) r^(2) =

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

Sum of the series sum_(r=1)^(n)(r^(2)+1)r!, is

Let sum_(r=1)^(n)(r^(4))=f(n). Then sum_(r=1)^(n)(2r-1)^(4) is equal to :

CENGAGE-COMPLEX NUMBERS-Exercise (Single)
  1. If z1 is a root of the equation a0z^n+a1z^(n-1)++a(n-1)z+an=3,w h e r ...

    Text Solution

    |

  2. If |z|<<sqrt(2)-1,t h e n|z^2+2zcosalpha|i s a. less than 1 b. sqr...

    Text Solution

    |

  3. Let |Z(r) - r| le r, for all r = 1,2,3….,n. Then |sum(r=1)^(n)z(r)| is...

    Text Solution

    |

  4. All the roots of the equation 1 lz^(10) + 10iz^(9) + 10iz -11=0 lie

    Text Solution

    |

  5. Let lambda in R . If the origin and the non-real roots of 2z^2+2z+lam...

    Text Solution

    |

  6. The roots of the equation t^3+3a t^2+3b t+c=0a r ez1, z2, z3 which rep...

    Text Solution

    |

  7. The roots of the cubic equation (z+ab)^3=a^3,a !=0 represents the ver...

    Text Solution

    |

  8. If |z(1)|=|z(2)|=|z(3)|=1 and z1+z2+z3=0 then the area of the triangle...

    Text Solution

    |

  9. Let z and omega be two complex numbers such that |z|le 1, |omega| le ...

    Text Solution

    |

  10. Let z(1),z(2),z(3),z(4) are distinct complex numbers satisfying |z|...

    Text Solution

    |

  11. z1, z2, z3,z4 are distinct complex numbers representing the vertices o...

    Text Solution

    |

  12. If k + |k + z^2|=|z|^2(k in R^-), then possible argument of z is

    Text Solution

    |

  13. If z(1),z(2),z(3) are the vertices of an equilational triangle ABC s...

    Text Solution

    |

  14. If z is a complex number having least absolute value and |z-2+2i|=|, ...

    Text Solution

    |

  15. If z is a complex number lying in the fourth quadrant of Argand plane ...

    Text Solution

    |

  16. If |z2+i z1|=|z1|+|z2|a n d|z1|=3a n d|z2|=4, then the area of A B C ...

    Text Solution

    |

  17. If a complex number z satisfies |2z+10+10i| le 5sqrt3-5, then the lea...

    Text Solution

    |

  18. If 'z, lies on the circle |z-2i|=2sqrt2, then the value of arg((z...

    Text Solution

    |

  19. z1 and z2, lie on a circle with centre at origin. The point of interse...

    Text Solution

    |

  20. If arg ((z(1) -(z)/(|z|))/((z)/(|z|))) = (pi)/(2) and |(z)/(|z|)-z(1)|...

    Text Solution

    |