Home
Class 12
MATHS
If a complex number z satisfies |2z+10+...

If `a` complex number `z` satisfies `|2z+10+10i| le 5sqrt3-5,` then the least principal argument of `z` is : (a) `-(5pi)/6` (b) `(11pi)/12` (c) `-(3pi)/4` (d) `-(2pi)/3`

A

`-(5pi)/(6)`

B

`-(11pi)/(12)`

C

`-(3pi)/(4)`

D

`-(2pi)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
A


`|2z+10 + 10i| le(5sqrt(3)-5)`
`rArr |z+ 5+ 5i|le (5sqrt(3)-5)/(2)`
Point B has the least principal argument
Now, `AB =(5sqrt(3)-1)/(2)`
`OA = 5 sqrt(2)`
`therefore /_AOB =(pi)/(12)`
`therefore Arg (z)= (5pi)/(6)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise (Multiple)|49 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise (Comprehension)|34 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise 3.11|6 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

If a complex number z satisfies |2z+10+10i|<=5sqrt(3)-5, then the least principal argument of z is :(a)-(5 pi)/(6) (b) (11 pi)/(12)( c) -(3 pi)/(4)(d)-(2 pi)/(3)

cot^(-1)(-sqrt3)= (a) -pi/6 (b) (5pi)/6 (c) pi/3 (d) (2pi)/3

cos^-1 {-sin((5pi)/6)}= (A) - (5pi)/6 (B) (5pi)/6 (C) (2pi)/3 (D) -(2pi)/3

If z=sqrt(3)-2+i, then principal value of argument z is (where i=sqrt(-1)-(5 pi)/(12)(2)(pi)/(12) (3) (7 pi)/(12) (4) (5 pi)/(12)

Principal argument of z = (i-1)/(i(1-"cos"(2pi)/(7))+"sin"(2pi)/(7)) is

The argument of (1-i)/(1+i) is (pi)/(2) b.(pi)/(2) c.(3 pi)/(2)d .(5 pi)/(2)

The principal value of the amplitude of (1+i) is pi b.(pi)/(12) c.(pi)/(4) d.(3 pi)/(4)

If sqrt(5-12i)+sqrt(-5-12i)=z ,then principal value of argz can be (pi)/(4) b.(pi)/(4) c.(3 pi)/(4) d.-(3 pi)/(4)

If |z-4+3i|le3, then the least value of |z|= (A) 2 (B) 3 (C) 4 (D) 5

CENGAGE-COMPLEX NUMBERS-Exercise (Single)
  1. Let z(1),z(2),z(3),z(4) are distinct complex numbers satisfying |z|...

    Text Solution

    |

  2. z1, z2, z3,z4 are distinct complex numbers representing the vertices o...

    Text Solution

    |

  3. If k + |k + z^2|=|z|^2(k in R^-), then possible argument of z is

    Text Solution

    |

  4. If z(1),z(2),z(3) are the vertices of an equilational triangle ABC s...

    Text Solution

    |

  5. If z is a complex number having least absolute value and |z-2+2i|=|, ...

    Text Solution

    |

  6. If z is a complex number lying in the fourth quadrant of Argand plane ...

    Text Solution

    |

  7. If |z2+i z1|=|z1|+|z2|a n d|z1|=3a n d|z2|=4, then the area of A B C ...

    Text Solution

    |

  8. If a complex number z satisfies |2z+10+10i| le 5sqrt3-5, then the lea...

    Text Solution

    |

  9. If 'z, lies on the circle |z-2i|=2sqrt2, then the value of arg((z...

    Text Solution

    |

  10. z1 and z2, lie on a circle with centre at origin. The point of interse...

    Text Solution

    |

  11. If arg ((z(1) -(z)/(|z|))/((z)/(|z|))) = (pi)/(2) and |(z)/(|z|)-z(1)|...

    Text Solution

    |

  12. The maximum area of the triangle formed by the complex coordinates z,...

    Text Solution

    |

  13. Consider the region S of complex numbers a such that |z^(2) - az + 1...

    Text Solution

    |

  14. The complex number associated with the vertices A, B, C of DeltaABC...

    Text Solution

    |

  15. If pa n dq are distinct prime numbers, then the number of distinct ima...

    Text Solution

    |

  16. Given z is a complex number with modulus 1. Then the equation [(1+i a)...

    Text Solution

    |

  17. The value of z satisfying the equation logz+logz^2+dot+logz^n=0i s

    Text Solution

    |

  18. If n in N >1 , then the sum of real part of roots of z^n=(z+1)^n i...

    Text Solution

    |

  19. Which of the following represents a points in an Argand pane, equid...

    Text Solution

    |

  20. Let a be a complex number such that |a| lt 1 and z(1),z(2)….. be verti...

    Text Solution

    |