Home
Class 12
MATHS
If |z(1)| = sqrt(2), |z(2)| = sqrt(3) an...

If `|z_(1)| = sqrt(2), |z_(2)| = sqrt(3) and |z_(1) + z_(2)| = sqrt((5-2sqrt(3)))` then arg `((z_(1))/(z_(2)))` (not neccessarily principal)

A

`(3pi)/(4)`

B

`(2pi)/(3)`

C

`(5pi)/(4)`

D

`(5)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the argument of the complex number \(\frac{z_1}{z_2}\) given the magnitudes of \(z_1\) and \(z_2\), and the magnitude of their sum. ### Step-by-step Solution: 1. **Given Information:** \[ |z_1| = \sqrt{2}, \quad |z_2| = \sqrt{3}, \quad |z_1 + z_2| = \sqrt{5 - 2\sqrt{3}} \] 2. **Using the Formula for the Magnitude of the Sum of Two Complex Numbers:** We know that: \[ |z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2|z_1||z_2|\cos(\theta_1 - \theta_2) \] where \(\theta_1 = \arg(z_1)\) and \(\theta_2 = \arg(z_2)\). 3. **Calculate the Magnitudes:** \[ |z_1|^2 = (\sqrt{2})^2 = 2, \quad |z_2|^2 = (\sqrt{3})^2 = 3 \] Therefore, \[ |z_1|^2 + |z_2|^2 = 2 + 3 = 5 \] 4. **Calculate \(|z_1 + z_2|^2\):** \[ |z_1 + z_2|^2 = \left(\sqrt{5 - 2\sqrt{3}}\right)^2 = 5 - 2\sqrt{3} \] 5. **Substituting into the Magnitude Equation:** \[ 5 - 2\sqrt{3} = 5 + 2\sqrt{6}\cos(\theta_1 - \theta_2) \] 6. **Rearranging the Equation:** \[ -2\sqrt{3} = 2\sqrt{6}\cos(\theta_1 - \theta_2) \] Dividing both sides by 2: \[ -\sqrt{3} = \sqrt{6}\cos(\theta_1 - \theta_2) \] 7. **Solving for \(\cos(\theta_1 - \theta_2)\):** \[ \cos(\theta_1 - \theta_2) = -\frac{\sqrt{3}}{\sqrt{6}} = -\frac{\sqrt{3}}{\sqrt{2}\sqrt{3}} = -\frac{1}{\sqrt{2}} \] 8. **Finding the Angles:** The angles where \(\cos\) is \(-\frac{1}{\sqrt{2}}\) are: \[ \theta_1 - \theta_2 = \frac{3\pi}{4} \quad \text{or} \quad \theta_1 - \theta_2 = \frac{5\pi}{4} \] 9. **Conclusion:** Therefore, the argument of \(\frac{z_1}{z_2}\) can be expressed as: \[ \arg\left(\frac{z_1}{z_2}\right) = \theta_1 - \theta_2 = \frac{3\pi}{4} \quad \text{or} \quad \frac{5\pi}{4} \]

To solve the problem, we need to find the argument of the complex number \(\frac{z_1}{z_2}\) given the magnitudes of \(z_1\) and \(z_2\), and the magnitude of their sum. ### Step-by-step Solution: 1. **Given Information:** \[ |z_1| = \sqrt{2}, \quad |z_2| = \sqrt{3}, \quad |z_1 + z_2| = \sqrt{5 - 2\sqrt{3}} \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise (Comprehension)|34 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise MATRIX MATCH TYPE|9 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise Exercise (Single)|89 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

If z_(1)=1+i,z_(2)=sqrt(3)+i then arg((z_(1))/(z_(2)))^(50) is

If z(2-2sqrt(3i))^(2)=i(sqrt(3)+i)^(4), then arg(z)=

If z_(1)=1+sqrt(3)i,z_(2)=1-sqrt(3)i, then (z_(1)^(100)+z_(2)^(100))/(z_(1)+z_(2))=

If | z_ (1) + z_ (2) | = | z_ (1) -z_ (2) |, then arg z_ (1) -arg z_ (2) =

If |z_(1)| = |z_(2)| = |z_(3)| = 1 and z_(1) + z_(2) + z_(3) = sqrt(2) + i , then the number z_(1)bar(z)_(2)+z_(2)bar(z)_(3) + z_(3)bar(z)_(1) is :

If | z_ (1) | = | z_ (2) | = | z_ (3) | = 1 & z_ (1) + z_ (2) + z_ (3) = sqrt (2) + i then ((z_ (1) ) / (z_ (2)) + (z_ (2)) / (z_ (3)) + (z_ (3)) / (z_ (4))) =

If | z_ (1) | = | z_ (2) | = | z_ (3) | = 1 & z_ (1) + z_ (2) + z_ (3) = sqrt (2) + i then ((z_ (1) ) / (z_ (2)) + (z_ (2)) / (z_ (3)) + (z_ (3)) / (z_ (4))) =

If |z_(1)| = 2 and (1-i)z_(2) + (1+i)bar(z)_(2) = 8 sqrt(2) , then

If z_(1)=sqrt(2)((cos pi)/(4)+i sin((pi)/(4))) and z_(2)=sqrt(3)((cos pi)/(3)+i sin((pi)/(3))) then |z_(1)z_(2)|=

CENGAGE-COMPLEX NUMBERS-Exercise (Multiple)
  1. If z1=a + ib and z2 = c + id are complex numbers such that |z1|=|z2|=...

    Text Solution

    |

  2. Let z1a n dz2 be complex numbers such that z1!=z2 and |z1|=|z2|dot If ...

    Text Solution

    |

  3. If |z(1)| = sqrt(2), |z(2)| = sqrt(3) and |z(1) + z(2)| = sqrt((5-2sqr...

    Text Solution

    |

  4. Let four points z(1),z(2),z(3),z(4) be in complex plane such that |z...

    Text Solution

    |

  5. A rectangle of maximum area is inscribed in the circle |z-3-4i|=1. If ...

    Text Solution

    |

  6. If |z1|=15a d n|z2-3-4i|=5,t h e n (|z1-z2|)(m in)=5 b. (|z1-z2|)(m i...

    Text Solution

    |

  7. P(z(1)),Q(z(2)),R(z(3)) and S(z(4)) are four complex numbers represent...

    Text Solution

    |

  8. If arg(z+a) = pi//6 and arg(z-a) = 2 pi//3 (a in R^(+)), then

    Text Solution

    |

  9. If a complex number z satisfies |z| = 1 and arg(z-1) = (2pi)/(3), then...

    Text Solution

    |

  10. If |z-1|=1, then

    Text Solution

    |

  11. If z(1) = 5 + 12i and |z(2)| = 4, then

    Text Solution

    |

  12. Let z(1),z(2),z(3) be the three nonzero comple numbers such that z(2)...

    Text Solution

    |

  13. z(1) and z(2) are the roots of the equaiton z^(2) -az + b=0 where ...

    Text Solution

    |

  14. If |(z-z(1))//(z-z(2))| = 3, where z(1) and z(2) are fixed complex ...

    Text Solution

    |

  15. If z=x+i y , then he equation |(2z-i)//(z+1)|=m represents a circle, t...

    Text Solution

    |

  16. System of equaitons |z+3|-|z-3| = 6 and |z-4|=r where r in R^(+) has

    Text Solution

    |

  17. Let the equaiton of a ray be |z-2|-|z-1-i| = sqrt(2). If the is stri...

    Text Solution

    |

  18. Given that the two curves a r g(z)=pi/6a n d|z-2sqrt(3)i|=r intersect ...

    Text Solution

    |

  19. On the Argand plane ,let z(1) = - 2+ 3z,z(2)= - 2-3z and |z| = 1. T...

    Text Solution

    |

  20. Let S = { z: x = x+ iy, y ge 0,|z-z(0)| le 1}, where |z(0)|= |z(0) - o...

    Text Solution

    |