Home
Class 12
MATHS
Let a,b in R and a^(2) + b^(2) ne 0 . ...

Let a,b ` in ` R and `a^(2) + b^(2) ne 0` . Suppose `S = { z in C: z = (1)/(a+ ibt),t in R, t ne 0}`, where `i= sqrt(-1)`. If `z = x + iy` and z in S, then (x,y) lies on

A

the circle with radius `(1)/(2a)` and centre `((1)/(2a),0)` for `a gt 0 be ne 0`

B

the circle with radius `-(1)/(2a)` and centre `(-(1)/(2) ,0) a lt 0, b ne 0`

C

the axis for `a ne 0, b =0`

D

the y-axis for `a = 0, bne 0`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

`z =(1)/(a+ibt)`
`rArr x +iy = (a-ibt)/(a^(2) + b^(2)t^(2))`
`rArr x = (a)/(a^(2) + b^(2)t^(2)),y = (-bt)/(a^(2) =b^(2)t^(2))`
Eliminating t, we get
`x^(20 + y^(2) = (x)/(a)`
`rArr (x-(1)/(2a))^(2) +y^(2) = ((1)/(2a))^(2)`
`therefore `Option (1) is correct.
(3),(4) can be verified by putting b = 0 and a=0 respectively.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Question Bank|30 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise JEE Main Previous Year|11 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

Let 0 ne a, 0 ne b in R . Suppose S={z in C, z=1/(a+ibt)t in R, t ne 0} , where i=sqrt(-1) . If z=x+iy and z in S , then (x,y) lies on

Let a,b in R and a^2+ b^2 ne 0 Suppose S={z in C : z =(1)/(alpha +I bt ), t in R, t ne 0 } where I= sqrt(-1) if z=x +iy and ne S, then (x,y) lies on

If |(z +4)/(2z -1)|=1, where z =x +iy. Then the point (x,y) lies on a:

If Re((z-1)/(2z+i))=1, where z=x+iy ,then the point (x,y) lies on a

If x, y, a, b in R, a ne 0 and (a + ib) (x + iy) = (a^(2) + b^(2))i , then (x, y) equals

If z ne 0 lies on the circle |z-1| = 1 and omega = 5//z , then omega lies on

If z = x + iy, x , y in R , then the louts Im (( z - 2 ) /(z + i)) = (1 ) /(2) represents : ( where i= sqrt ( - 1))

Let z = x + iy be a non - zero complex number such that z^(2) = I |z|^(2) , where I = sqrt(-1) then z lies on the :

If z+sqrt(2)|z+1|+i=0 and z=x+iy then