Home
Class 12
MATHS
Let a , b ,xa n dy be real numbers such ...

Let `a , b ,xa n dy` be real numbers such that `a-b=1a n dy!=0.` If the complex number `z=x+i y` satisfies `I m((a z+b)/(z+1))=y` , then which of the following is (are) possible value9s) of x?| `-1-sqrt(1-y^2)` (b) `1+sqrt(1+y^2)` `-1+sqrt(1-y^2)` (d) `-1-sqrt(1+y^2)`

A

`-1-sqrt(1-y^(2))`

B

`1+sqrt(1+y^(2))`

C

`1-sqrt(1+y^(2))`

D

`-1+sqrt(1-y^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A, D

We have `Im((az + b)/(z+1))= y` and `z = x+iy`
`therefore Im((a(x+iy)+b)/(x+iy+1))= y`
`rArr IM(((ax+b+iay)(x+1-iy))/((x +1)^(2) +y^(2)))`
`rArr -y(ax + b)+ay(x+1)=y((x+1)^(2)+y^(2))`
`because y ne 0 and a-b=1`
`therefore (x+1)^(2) +y^(2) = 1`
`rArr x = - 1 pm sqrt(1-y^(2))`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Question Bank|30 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise JEE Main Previous Year|11 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

Let a , b ,xa n dy be real numbers such that a-b=1a n dy!=0. If the complex number z=x+i y satisfies I m((a z+b)/(z+1))=y , then which of the following is (are) possible value9s) of x? (a)-1-sqrt(1-y^2) (b) 1+sqrt(1+y^2) (c)-1+sqrt(1-y^2) (d) -1-sqrt(1+y^2)

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y),show(dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

The solution of x sqrt(1+y^(2))dx+y sqrt(1+x^(2))dy=0

Solve the following differential equation: x sqrt(1-y^(2))dx+y sqrt(1-x)dy=0

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), provethat (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If the complex number z=x+i y satisfies the condition |z+1|=1, then z lies on (a)x axis (b) circle with centre(-1,0) and radius1 (c)y-axis (d) none of these

Show : sqrt( x^-1y) times sqrt( y^-1z ) times sqrt( z^-1x) = 1

If x,y,z are positive real numbers show that: sqrt(x^(-1)y)*sqrt(y^(-1)z)*sqrt(z^(-1)x)=1