Home
Class 12
MATHS
Let omega be the complex number cos((2...

Let `omega` be the complex number `cos((2pi)/3)+isin((2pi)/3)`. Then the number of distinct complex cos numbers z satisfying `Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0` is

Text Solution

Verified by Experts

The correct Answer is:
1

(1) `omega =e^(i2pi//3)`
`|{:(,z+1,omega,omega^(2)),(,omega,z+omega^(2),1),(,omega^(2),1, z+omega):}|=0`
Applying `(C_(1) to C_(1) + C_(2) + C_(3))`
`|{:(,1,omega,omega^(2)),(,omega,z+omega^(2),1),(,1,1, z+omega):}|=0`
`rArr z^(3) = 0`
z= 0 is only solutions.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    CENGAGE|Exercise Question Bank|30 Videos
  • COMPLEX NUMBERS

    CENGAGE|Exercise JEE Main Previous Year|11 Videos
  • CIRCLES

    CENGAGE|Exercise Question Bank|32 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|91 Videos

Similar Questions

Explore conceptually related problems

Let omega be the complex number cos((2 pi)/(3))+i sin((2 pi)/(3))* Then the number of distinct complex cos numbers z satisfying Delta=det[[omega,z+omega^(2),1omega,z+omega^(2),1omega^(2),1,z+omega]]=0 is

Let w be the complex number cos(2pi)/3 + isin(2pi)/3 . Then the number of distinct complex numbers z satisfying |(z+1, w, w^2),(2, z+w^2, 1),(w^2, 1, z+w)|=0 is equal

Find the number of values of complex numbers omega satisfying the system of equations z^(3)==(overlineomega)^(7) and z^(5).omega^(11)=1

Let w(Im w!=0) be a complex number.Then the set of all complex numbers z satisfying the equal w-bar(w)z=k(1-z), for some real number k,is :

Find number of values of complex numbers omega satisfying the system of equaltion z^(3)=-(bar(omega))^(7) and z^(5).omega^(11)=1

If z is a complex number satisfying |z-3|<=4 and | omega z-1-omega^(2)|=a (where omega is complex cube root of unity then

If complex number omega=(5+3z)/(5(1-z))|z|<1 then

Let z,omega be complex number such that z+ibar(omega)=0 and z omega=pi. Then find arg z

Let Z and w be two complex number such that |zw|=1 and arg(z)-arg(w)=pi/2 then