Home
Class 12
MATHS
If a(n+1)=1/(1-an) for n>=1 and a3=a1...

If `a_(n+1)=1/(1-a_n)` for `n>=1` and `a_3=a_1`. then find the value of `(a_2001)^2001`.

Text Solution

Verified by Experts

The correct Answer is:
`-1`

We have,
`a_(n+1)=1/(1-a_(n))`
`thereforea_(2)=1/(1-a_(1))`
and `a_(3)=1/(1-a_(2))=1/(1-1/(1-a_(1))=(1-a_(1))/(-a_(1))`
Since `a_(3)=a_(1),` we have `1-a_(1)/(-a_(1))=a_(1)`
`rArra_(1)^(2)-a_(1)+1=0`
`rArra_(1)=-omega` or `-omega^(2)`, where `omega` is cube root of unity.
Now, `a_(5)=1/(1-a_(4))=1/(1-1/(1-a_(3)))`
`=(1-a_(3))/(-a_(3))`
`=(1-a_(1))/(-a_(1))=a_(1)=a_(3)` and so on
`thereforea_(1)=a_(3)=a_(5)....a_(2001)`
Thus, `(a_(2001))^(2001)=(-omega)^(2001)`
or `(-omega^(2))^(2001=-1`
or `(-1)^(2001)(omega^(3))^(1334)=-1` (`becauseomega^(3)=1`)
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.2|10 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.3|9 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Examples|120 Videos
  • PROBABILITY II

    CENGAGE|Exercise NUMARICAL VALUE TYPE|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

If a_(n+1)=(1)/(1-a_(n)) for n>=1 and a_(3)=a_(1) then find the value of (a_(2001))^(2001)

b_(n+1)=(1)/(1-b_(n))f or n>=1andb_(1)=b_(3), then sum_(r=1)^(2001) is equal to 2001b.-2001c.0d .none of these

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

If a_1=1\ a n d\ a_(n+1)=(4+3a_n)/(3+2a_n),\ ngeq1\ a n d\ if\ (lim)_(n->oo)a_n=n then the value of a_n is sqrt(2) b. -sqrt(2) c. 2\ d. none of these

If a_(i)gt0 for i u=1, 2, 3, … ,n and a_(1)a_(2)…a_(n)=1, then the minimum value of (1+a_(1))(1+a_(2))…(1+a_(n)) , is

Let a_1,a_2,a_3,.... are in GP. If a_n>a_m when n>m and a_1+a_n=66 while a_2*a_(n-1)=128 and sum_(i=1)^n a_i=126 , find the value of n .