Home
Class 12
MATHS
If alpha (!=1) is a nth root of unity th...

If `alpha (!=1)` is a nth root of unity then `S = 1 + 3alpha+ 5alpha^2 + .......... `upto n terms is equal to

Text Solution

Verified by Experts

`alpha` is the nth root of unity.
Therefore, `alpha` is root of the equation `z^(n)=1`.
Let `S=1+2alpha+3alpha^(2)+…+nalpha^(n-1)`
`rArralphaS=alpha+2alpha^(2)+3alpha^(2)+…+(n-1)alpha^(n-1)+nalpha^(n)`
On subtracting, we get
`S(1-alpha)=1+[alpha+alpha^(2)+alpha^(n-1)]-nalpha^(n)`
`rArrS(1-alpha)=1+(alpha(1-alpha^(n-1)))/(1-alpha)-nalpha^(n)`
`rArrS=1/(1-alpha)+(alpha-alpha^(n))/((1-alpha)^(2))-(nalpha^(n))/(1-alpha)`
`=1/(1-alpha)+(alpha-1)/((1-alpha)^(2))-n/(1-alpha)` `[becausealpha^(n)=1]`
`=-n/(1-alpha)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.8|10 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.9|9 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.6|11 Videos
  • PROBABILITY II

    CENGAGE|Exercise NUMARICAL VALUE TYPE|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

If alpha(!=1) is a nth root of unity then S=1+3 alpha+5 alpha^(2)+......... upto n terms is equal to

If alpha Is the fifth root of unity,then :

Knowledge Check

  • If alpha ne 1 is any nth root of unity, then S=1+3 alpha + 5 alpha^2+… upto n terms, is equal to

    A
    `(2n)/(1-alpha)`
    B
    `- (2n)/(1-alpha)`
    C
    `n/(1-alpha)`
    D
    `- n/(1-alpha)`
  • If beta ne 1 be any nth root of unity, then 1 + 3 beta + 5 beta ^(2) + . . . n terms equals

    A
    `(2 n)/( 1 - beta)`
    B
    ` - (2 beta)/( 1 - beta)`
    C
    ` - (2 n)/( ( 1- beta)^(2))`
    D
    none
  • If alpha is an n^(th) roots of unity, then 1+2alpha+3alpha^(2)+……..+nalpha^(n-1) equals

    A
    `n/(1-alpha)`
    B
    `-n/(1-alpha)`
    C
    `-n/(1-alpha)^(2)`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If alpha the fifth root of unity then

    If 1,alpha,alpha^(2),......alpha^(n-1) are n,n^(th) roots ofunity, then 1+2 alpha+3 alpha^(2)+4 alpha^(3)+......+n terms is equal to

    If alpha is the nth root of unity,then 1+2 alpha+3 alpha^(2)+rarr n terms equal to a.(-n)/((1-alpha)^(2)) b.(-n)/(1-alpha^(2)) c.(-2n)/(1-alpha) d.(-2n)/((1-alpha)^(2))

    If alpha is an n th root of unity other than unity itself, then the value of 1 + alpha + alpha^(2) + . . . + alpha ^(n - 1) is

    If alpha , alpha^(2) , . . . alpha^(n- 1) are nth roots of unity, the value of (3 - alpha) ( 3 - alpha^(2)) ( 3 - alpha^(3)) . . . ( 3 - alpha ^(n - 1)) is