Home
Class 12
MATHS
If alpha (!=1) is a nth root of unity th...

If `alpha (!=1)` is a nth root of unity then `S = 1 + 3alpha+ 5alpha^2 + .......... `upto n terms is equal to

Text Solution

Verified by Experts

`alpha` is the nth root of unity.
Therefore, `alpha` is root of the equation `z^(n)=1`.
Let `S=1+2alpha+3alpha^(2)+…+nalpha^(n-1)`
`rArralphaS=alpha+2alpha^(2)+3alpha^(2)+…+(n-1)alpha^(n-1)+nalpha^(n)`
On subtracting, we get
`S(1-alpha)=1+[alpha+alpha^(2)+alpha^(n-1)]-nalpha^(n)`
`rArrS(1-alpha)=1+(alpha(1-alpha^(n-1)))/(1-alpha)-nalpha^(n)`
`rArrS=1/(1-alpha)+(alpha-alpha^(n))/((1-alpha)^(2))-(nalpha^(n))/(1-alpha)`
`=1/(1-alpha)+(alpha-1)/((1-alpha)^(2))-n/(1-alpha)` `[becausealpha^(n)=1]`
`=-n/(1-alpha)`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.8|10 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.9|9 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.6|11 Videos
  • PROBABILITY II

    CENGAGE|Exercise NUMARICAL VALUE TYPE|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

If alpha(!=1) is a nth root of unity then S=1+3 alpha+5 alpha^(2)+......... upto n terms is equal to

If alpha Is the fifth root of unity,then :

If alpha the fifth root of unity then

If 1,alpha,alpha^(2),......alpha^(n-1) are n,n^(th) roots ofunity, then 1+2 alpha+3 alpha^(2)+4 alpha^(3)+......+n terms is equal to

If alpha is an n^(th) roots of unity, then 1+2alpha+3alpha^(2)+……..+nalpha^(n-1) equals

If alpha is the nth root of unity,then 1+2 alpha+3 alpha^(2)+rarr n terms equal to a.(-n)/((1-alpha)^(2)) b.(-n)/(1-alpha^(2)) c.(-2n)/(1-alpha) d.(-2n)/((1-alpha)^(2))