Home
Class 12
MATHS
If Sigma(r=1)^(n) Tr=n/8(n+1)(n+2)(n+3) ...

If `Sigma_(r=1)^(n) T_r=n/8(n+1)(n+2)(n+3)` then find `Sigma_(r=1)^(n) 1/T_r`

Text Solution

Verified by Experts

The correct Answer is:
`(n(n+3))/(2(n+1)(n+2))`

`T_(n)=sum_(r=1)^(n)T_(r)-sum_(r=1)^(n-1)T_(r)`
`=(n(n+1)(n+2)(n+3))/8-((n-1)n(n+1)(n+2))/8`
`=(n(n+1)(n+2))/2`
`therefore1/(T_(r))=2/(r(r+1)(r+2))=(r+2-r)/(r(r+1)r+2))`
`=1/(r(r+1))-1/((r+1)(r+2)`
`=V(r )-V(r+1)`
`thereforesum_(r=1)^(n)1/(T^(r))=sum_(r=1)^(n)(V(r )-V(r+1))`
`=V(1)-V(n+1)`
`=1/2-1/((n+1)(n+2))`
`=(n(n+3))/(2(n+1)(n+2))`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise (Single)|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise EXERCIESE ( MULTIPLE CORRECT ANSWER TYPE )|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.8|10 Videos
  • PROBABILITY II

    CENGAGE|Exercise NUMARICAL VALUE TYPE|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

If sum_(r=1)^(n)t_(r)=(n)/(8)(n+1)(n+2)(n+3), then find sum_(r=1)^(n)(1)/(t_(r)).

If sum_(r=1)^(n)T_(r)=(n)/(8)(n+1)(n+2)(n+3)," find "sum_(r=1)^(n)(1)/(T_(r)) .

If S_(n)=Sigma_(r=1)^(n)t_(r)=(1)/(6)n(2n^(2)+9n+13) , then Sigma_(r=1)^(n)sqrt(t_(r)) is equal to

If Sigma_(r=1)^(2n) sin^(-1) x^(r )=n pi, then Sigma__(r=1)^(2n) x_(r ) is equal to

Find the sum Sigma_(r=1)^(n) 1/(r(r+1)(r+2)(r+3)) Also,find Sigma_(r=1)^(oo) 1/(r(r+1)(r+2)(r+3))

If sum_(r=1)^(n)T_(r)=n(2n^(2)+9n+13), then find the sum sum_(r=1)^(n)sqrt(T_(r))

If Sigma_(r=1)^(n) cos^(-1)x_(r)=0, then Sigma_(r=1)^(n) x_(r) equals