Home
Class 12
MATHS
Find the sum Sigma(r=1)^(oo)(3n^2+1)/((n...

Find the sum `Sigma_(r=1)^(oo)(3n^2+1)/((n^2-1)^3)`

Text Solution

Verified by Experts

The correct Answer is:
`9/16`

`T_(n)=(3n^(2)+1)/((n^(2)-1)^(3))=1/2(6n^(2)+2)/((n^(2)-1)^(3))`
`=1/2(((n+1)^(3)-(n-1)^(3))/((n+1)^(3)(n-1)^(3)))`
`=1/2(1/((n-1)^(3))-1/(n+1)^(3))`
`thereforeS=1/2[(1/1^(3)-1/3^(3))+(1/2^(3)-1/3^(3))+(1/2^(3)-1/4^(3))+(1/3^(3)-1/5^(3))`
`+(1/4^(3)-1/6^(3))+...]`
`=1/2(1+1/8)=9/16`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise (Single)|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise EXERCIESE ( MULTIPLE CORRECT ANSWER TYPE )|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.8|10 Videos
  • PROBABILITY II

    CENGAGE|Exercise NUMARICAL VALUE TYPE|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

Find the sum Sigma_(r=1)^(oo) (r-2)/((r+2)(r+3)(r+4))

Find the sum Sigma_(r=1)^(n) 1/(r(r+1)(r+2)(r+3)) Also,find Sigma_(r=1)^(oo) 1/(r(r+1)(r+2)(r+3))

Find the sum sum_(n=1)^(oo)(6^(n))/((3^(n)-2^(n))(3^(n+1)-2^(n+1)))

Find the sum Sigma_(r=1)^(n) r/((r+1)!) . Also, find the sum of infinite terms.

Find the sum Sigma_(j=1)^(n) Sigma_(i=1)^(n) I xx 3^j

If S=sum_(n=2)^oo (3n^2+1)/(n^2-1)^3 then 9/S=

If a=sum_(n=r)^( oo)(1)/(r^(4)) then sum_(r=1)^(oo)(1)/((2r-1)^(4))=

If S=sum_(n=2)^(oo)(3n^(2)+1)/((n^(2)-1)^(3)) then (9)/(4S) is