Home
Class 12
MATHS
Let S=(sqrt(1))/(1+sqrt1+sqrt(2))+sqrt(2...

Let `S=(sqrt(1))/(1+sqrt1+sqrt(2))+sqrt(2)/(1+sqrt(2)+sqrt(3))+(sqrt(3))/(1+sqrt(3)+sqrt(4))+...+(sqrt(n))/(1+sqrt(n)+(sqrtn+1))=10`
Then find the value of n.

Text Solution

Verified by Experts

The correct Answer is:
n=24

`T_(r)=(sqrtr)/(1+sqrtr+sqrt(r+1))=(sqrtr{1+sqrtr-sqrt(r+1)})/(1+r+2sqrtr-(r+1))`
`=1/2{1+sqrtr-sqrt(r+1)}`
`thereforeS_(n)=1/2(n+1)-sqrt(n+1)=10`
Let `sqrt(n+1)`=x
`thereforex^(2)-x=20`
`rArrx^(2)-x-20=0`
`rArrx=sqrt(n+1)=5`
`thereforen=24`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise (Single)|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise EXERCIESE ( MULTIPLE CORRECT ANSWER TYPE )|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.8|10 Videos
  • PROBABILITY II

    CENGAGE|Exercise NUMARICAL VALUE TYPE|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))

(1)/(sqrt(2)+sqrt(3))-(sqrt(3)+1)/(2+sqrt(3))+(sqrt(2)+1)/(2+2sqrt(2))

(sqrt(2)(2+sqrt(3)))/(sqrt(3)(sqrt(3)+1))-(sqrt(2)(2-sqrt(3)))/(sqrt(3)(sqrt(3)-1))

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+...(1)/(sqrt(99)+sqrt(100))

1/(1-sqrt(2))+ 1/(sqrt(2)-sqrt(3))+1/(sqrt(3)-sqrt(4))+..........+1/(sqrt(8)-sqrt(9))

([(sqrt(2)+i sqrt(3))+(sqrt(2)-i sqrt(3))])/([(sqrt(3)+1sqrt(2))+(sqrt(3)-1sqrt(2))])

Evaluate 1/(1+sqrt(2))+1/(sqrt(2)+sqrt(3))+1/(sqrt(3)+sqrt(4))

Simplify: (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(5))