Home
Class 12
MATHS
Find the sum (1xx2)/(3!)+(2xx2)^2/(4!)+(...

Find the sum `(1xx2)/(3!)+(2xx2)^2/(4!)+(3xx2)^3/(5!)+....+(20xx2)^30/(22!)`

Text Solution

Verified by Experts

The correct Answer is:
`1-(2^(21))/(22!)`

`T_(r)=(rxx2^(r ))/((r+2)!)=((r+2-2)cdot2^(r ))/((r+2)!)`
`=(2^(r ))/((r+1)!)-(2^(r+1))/((r+2)!)`
`therefore` Required sum=`sum_(r=1)^(20)[(2^(r ))/((r+1)!)-(2^(r+1))/((r+2)!)]`
`=2/(2!)-2^(21)/(22!)=1-2^(21)/(22!)`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise (Single)|93 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise EXERCIESE ( MULTIPLE CORRECT ANSWER TYPE )|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.8|10 Videos
  • PROBABILITY II

    CENGAGE|Exercise NUMARICAL VALUE TYPE|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

Find the sum (1^(4))/(1xx3)+(2^(4))/(3xx5)+(3^(4))/(5xx7)+......+(n^(4))/((2n-1)(2n+1))

Find the sum (3)/(1xx2)xx(1)/(2)+(4)/(2xx3)xx((1)/(2))^(2)+(5)/(3xx4)xx((1)/(2))^(2)+... to n terms.

Find the sum of the series (2)/(1xx2)+(5)/(2xx3)xx2+(10)/(3xx4)xx2^(2)+(17)/(4xx5)xx2^(3)+rarr terms.

The sum (3xx1^3)/1^2+ (5xx(1^3+2^3))/(1^2+2^2)+...=

1 (4)/(5) xx 2 (2)/(3) xx 3 (1)/(3) xx (1)/(4) =

Find the sum of the series: 1xx2^(2)+2xx3^(2)+3xx4^(2)+... "to n terms"

Find the HCF of (2^(5) xx 5^(2) xx 11^(1)), (3^(2) xx 5^(3) xx 11^(2)) and (2^(4) xx 3^(6) xx 5^(1) xx 7^4)

Find the H.C.F. of (2^(3)xx3xx5) and (2^(4)xx5^2xx17)