Home
Class 12
MATHS
The sum of series x/(1-x^2)+(x^2)/(1-x^4...

The sum of series `x/(1-x^2)+(x^2)/(1-x^4)+(x^4)/(1-x^8)+` to infinite terms, if `|x|<1,` is `x/(1-x)` b. `1/(1-x)` c. `(1+x)/(1-x)` d. `1`

A

`x/(1-x)`

B

`(1)/(1-x)`

C

`(1+x)/(1-x)`

D

1

Text Solution

Verified by Experts

The correct Answer is:
A

The general term of the given series is
`t_(n)=(x^(2n-1))/(1-x^(2n))=(1+x^(2n-1)-1)/((1+x^(2n-1))(1-x^(2n-1)))`
`=1/(1-x^(2n-1))-1/(1-x^(2n))`
Now, `S_(n)=sum_(n=1)^(n)t_(n)`
`=[{:({1/(1-x)-1/(1-x^(2))}+{1/(1-x^(2))-1/(1-x^(4))}),(" "+...+{1/(1-x^(2n-1))-1/(1-x^(2n))}):}]`
`=1/(1-x)-1/(1-x^(2n))`
Therefore, the sum to infinite terms is
`lim_(ntooo)S_(n)=1/(1-x)-1`
`=x/(1-x) [because lim_(ntooo)x^(2n)=0,` as `absxlt1]`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise EXERCIESE ( MULTIPLE CORRECT ANSWER TYPE )|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise (Multiple & Comprehension)|65 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise Exercise 5.9|9 Videos
  • PROBABILITY II

    CENGAGE|Exercise NUMARICAL VALUE TYPE|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

Statement -1: The sum of the series (1)/(1!)+(2)/(2!)+(3)/(3!)+(4)/(4!)+..to infty is e Statement 2: The sum of the seies (1)/(1!)x+(2)/(2!)x^(2)+(3)/(3!)x^(3)+(4)/(4!)x^(4)..to infty is x e^(x)

If the sum of the series 1+(2)/(x)+(4)/(x^(2))+(8)/(x^(3))+....oo is finite number,

If the sum of the series 1+(2)/(x)+(4)/(x^(2))+(8)/(x^(3))+....oo is finite number

The sum of the series (1)/(2)x^(2)+(2)/(3)x^(3)+(3)/(4)x^(4)+(4)/(5)x^(5)+... is :

Find the sum of the series 1+2^(2)x+3^(2)x^(2)+4^(2)x^(3)+"...."" upto "infty|x|lt1 .

For x>0 the sum of the series (1)/(1+x)-(1-x)/((1+x)^(2))+((1-x)^(2))/((1+x)^(3))-...oo is equal to

The sum of n terms of the series (1)/(1 + x) + (2)/(1 + x^(2)) + (4)/(1 + x^(4)) + ……… is

CENGAGE-PROGRESSION AND SERIES-Exercise (Single)
  1. Consider the sequence 1,2,2,4,4,4,8,8,8,8,8,8,8,8,... Then 1025th term...

    Text Solution

    |

  2. The value of Sigma(i=1)^(n) Sigma(j=1)^(i) underset(k=1)overset(j) =22...

    Text Solution

    |

  3. If 1^2+2^2+3^2++2003^2=(2003)(4007)(334) and (1)(2003)+(2)(2002)+(3)(2...

    Text Solution

    |

  4. If tn denotes the nth term of the series 2+3+6+11+18+….. Then t50 is

    Text Solution

    |

  5. The sum of series Sigma(r=0)^(r) (-1)^r(n+2r)^2 (where n is even) is

    Text Solution

    |

  6. If(1^2-t1)+(2^2-t2)+….+(n^2-tn)=(n(n^2-1))/(3) then tn is equal to

    Text Solution

    |

  7. If (1+3+5++p)+(1+3+5++q)=(1+3+5++r) where each set of parentheses cont...

    Text Solution

    |

  8. If Hn=1+12++1/ndot , then the value of Sn=1+3/2+5/3++(99)/(50) is H(50...

    Text Solution

    |

  9. The sum to 50 terms of the series 3/1^2+5/(1^2+2^2)+7/(1^+2^2+3^2)+...

    Text Solution

    |

  10. Let S=4/19+44/(19)^2+444/(19)^3+...oo then find the value of S

    Text Solution

    |

  11. If 1-1/3+1/5-1/7+1/9-1/(11)+=pi/4 , then value of 1/(1xx3)+1/(5xx7)+1/...

    Text Solution

    |

  12. If 1/(1^2)+1/(2^2)+1/(3^2)+ tooo=(pi^2)/6,t h e n1/(1^2)+1/(3^2)+1/(5^...

    Text Solution

    |

  13. lim(nrarroo) Sigma(r=1)^(n) (r)/(1xx3xx5xx7xx9xx...xx(2r+1)) is equal ...

    Text Solution

    |

  14. The greatest interger by which 1+Sigma(r=1)^(30) rxxr ! is divisible...

    Text Solution

    |

  15. If Sigma(r=1)^(n) r^4=I(n), " then "Sigma(r=1)^(n) (2r -1)^4 is equal ...

    Text Solution

    |

  16. Value of (1+1/3)(1+1/(3^2))(1+1/(3^4))(1+1/(3^8))oo is equal to 3 b. 6...

    Text Solution

    |

  17. If x1,x2 …,x(20) are in H.P and x1,2,x(20) are in G.P then Sigma(r=1)^...

    Text Solution

    |

  18. The value of Sigma(r=1)^(n) (a+r+ar)(-a)^r is equal to

    Text Solution

    |

  19. The sum of series x/(1-x^2)+(x^2)/(1-x^4)+(x^4)/(1-x^8)+ to infinite t...

    Text Solution

    |

  20. The sum of 20 terms of the series whose rth term s given by kT(n)=(-1)...

    Text Solution

    |