Home
Class 12
MATHS
Let a1,a2,a3…., a49 be in A.P . Such th...

Let `a_1,a_2,a_3…., a_49` be in A.P . Such that `Sigma_(k=0)^(12) a_(4k+1)=416` and `a_9+a_(43)=66` .If `a_1^2+a_2^2 +…+ a_(17)` = 140 m then m is equal to

A

33

B

66

C

68

D

34

Text Solution

Verified by Experts

The correct Answer is:
D

Let the first term of A.P be 'a ' and the common difference be d .
`underset(k=0)overset(12)Sigma a_(4k+1)= 416`
`rArr a_1+a_5+a_9+……+ a_(49)=46`
`rArr 13/2 xx (a_1-a_49)=416`
`rArr a+a++48 d = 64`
`therefore a+24d = 32`
`a_9+a_43=66`
`rArr a+8d+a+42d=66`
`rArr a+25d = 33`
Solving (i) and (ii) ,we get
d=1,a=8
Now 140 m `=a_1^2+a_^2+....+a_(17)^2`
`8^2+9^2+10^2+.....+24^2`
`(1^2+2^2+....+7^2+8^2+....+24^2)-(1^2+2^2 +...+7^2)`
`(24xx 25 xx 49)/(6)-(7xx 8xx 15)/(6)`
=4900-140
=140 (35-1)
`=140 xx 34`
`therefore m= 34`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSION AND SERIES

    CENGAGE|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • PROGRESSION AND SERIES

    CENGAGE|Exercise JEE Main Previous Year|12 Videos
  • PROBABILITY II

    CENGAGE|Exercise NUMARICAL VALUE TYPE|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE|Exercise JEE Advanced Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

Let a_(1),a_(2),a_(3)...a_(49) be in AP such that sum_(k=0)^(12)(a_(4)k+1)=416 and a_(9)+a_(43)=66 If a_(1)^(2)+a_(2)^(2)+...+a_(17)^(2)=140m then m is equal to (1)66(2)68(3) 34(4)33

If a_1,a_2,……….,a_(n+1) are in A.P. prove that sum_(k=0)^n ^nC_k.a_(k+1)=2^(n-1)(a_1+a_(n+1))

Let a_1,a_2,a_3 …. a_n be in A.P. If 1/(a_1a_n)+1/(a_2a_(n-1)) +… + 1/(a_n a_1) = k/(a_1 + a_n) (1/a_1 + 1/a_2 + …. 1/a_n) , then k is equal to :

"If "a_1,a_2,a_3,.....,a_n" are in AP, prove that "a_(1)+a_(n)=a_(r)+a_(n-r+1)""

If a_1, a_2, a_3 ,........ are in A.P. such that a_1 + a_5 + a_10 + a_15 + a_20 + a_24 = 225 , then a_1 + a_2+ a_3 + ......+ a_23 +a_24 is equal to

a_1, a_2, a_3 …..a_9 are in GP where a_1 lt 0, a_1 + a_2 = 4, a_3 + a_4 = 16 , if sum_(i=1)^9 a_i = 4 lambda then lambda is equal to

CENGAGE-PROGRESSION AND SERIES-JEE Advanced Previous Year
  1. For any three positive real numbers a, b and c, 9(25a^2+b^2)+25(c^2-3a...

    Text Solution

    |

  2. Let a,b,c in R.If f(x) = ax^2+bx +c is such that a +b+c =3 and f(x+y)...

    Text Solution

    |

  3. Let A be the sum of the first 20 terms and B be the sum of the first 4...

    Text Solution

    |

  4. Let a1,a2,a3…., a49 be in A.P . Such that Sigma(k=0)^(12) a(4k+1)=41...

    Text Solution

    |

  5. Let a(1),a(2),a(3), . . . be a harmonic progression with a(1)=5anda(20...

    Text Solution

    |

  6. The value of Sigma(k=1)^(13) (1)/(sin(pi/4+((k-1)pi)/6)sin(pi/4+(kpi...

    Text Solution

    |

  7. Let bi > 1 for i =1, 2,....,101. Suppose loge b1, loge b2,....,loge b1...

    Text Solution

    |

  8. Let Sn=Sigma(k=1)^(4n) (-1)^((k(k+1))/2)k^2.Then Sn can take value (s...

    Text Solution

    |

  9. Let Sk,k=1, 2, …. 100 denote the sum of the infinite geometric series ...

    Text Solution

    |

  10. Let a1,a2,a3 ...... a11 be real numbers satisfying a1 =15, 27-2a2 > ...

    Text Solution

    |

  11. Let a1,a2,a3,……,a100 be an arithmetic progression with a1=3 and Sp=Sig...

    Text Solution

    |

  12. A pack contains n cards numbered from 1 to n . Two consecutive numbere...

    Text Solution

    |

  13. Let a,b ,c be positive integers such that b/a is an integer. If a,b,c ...

    Text Solution

    |

  14. Suppose that all the terms of an arithmetic progression (A.P.) are nat...

    Text Solution

    |

  15. The sides of a right angled triangle are in arithmetic progression....

    Text Solution

    |

  16. Let X be the set consisting of the first 2018 terms of the arithmet...

    Text Solution

    |