Home
Class 12
MATHS
Prove that (n !)^2<n^nn !<(2n)! for all ...

Prove that `(n !)^2

Text Solution

Verified by Experts

We have,
`(n!)^(2)=(n!)=(1xx2xx3xx4xx.. Xx(n-1)n)(n!)`
Now, ` 1 le n, 2 le n, 3 le n, .., n le n`
or `1xx2xx3..(n-1)n le n xx n xx n..n`
or `n! le n^(n)`
or `(n!)(n!) le (n!)n^(n)`
or `(n!)^(2) le n^(n) (n!)`
Also, `(2n)!=1xx2..n xx (n+1)..(2n-1)xx(2n)`
Now, `n+1 gt n, n+2 gt n, n+3 gt n, .., n+n gt n`
or `(n+1)(n+2)(n+3)..(2n-1)(2n) gt n^(n)`
or ` n!(n+1)(n+2)..(2n-1)(2n) gt n!n^(n)`
or `(2n)! gt n! n^(n)`
`implies n! n^(n) lt (2n)!`
From (1) and (2), we get `(n!)^(2) le n^(n)(n!)lt (2n)!`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (2n)^2 where n in N can be expressed as the sum of n terms of a series of integers in AP

Prove that ((n + 1)/(2))^(n) gt n!

Prove that ((2n)!)/(2^(2n)(n!)^(2))<=(1)/(sqrt(3n+1)) for all n in N

Prove that (2^(n)+2^(n-1))/(2^(n+1)-2^(n))=(3)/(2)

Prove that P(n,n)=2.P(n,n-2)

Prove that ((2n)!)/(n!) =2^(n) xx{1xx3xx5xx...xx(2n-1)}.

Prove that (1)/(n!)+(1)/(2!(n-2)!)+(1)/(4!(n-4)!)+...=(1)/(n!)2^(n-1)

Prove that: n!(n+2)=n!+(n+1)!

Prove that n!(n+2)=n!+(n+1)!

Prove that n! (n+2) = n! +(n+1)! .