Home
Class 12
MATHS
Find the exponent of 3 in 100!...

Find the exponent of 3 in 100!

Text Solution

Verified by Experts

`100!=1xx2xx3xx..xx98xx99xx100`
`=(1xx2xx4xx5xx..xx98xx100)xx(3xx6xx9xx..xx96xx99)`
`=Kxx3^(33)(1xx2xx3xx.xx32xx33)`
`=Kxx3^(33)(1xx2xx4xx.xx31xx32)(3xx9xx12xx.xx30xx33)`
`=[K(1xx2xx4xx..xx31xx32)]xx3^(33)xx(3xx9xx12xx..xx30xx33)`
`=K_(1)xx3^(33)xx3^(11)(1xx2xx3xx..xx10xx11)`
`=K_(1)xx(1xx2xx4xx..xx10xx11)3^(33)xx3^(11)(3xx6xx9)`
`=K_(2)xx3^(33)xx3^(11)xx3^(3)xx3`
`=K_(3)xx3^(48)`
Hence, exponent of 3 is 48.
Alternate solution :
Exponent of 3 in 100! is
`[(100)/(3)]+[(100)/(3^(2))]+[(100)/(3^(2))]+[(100)/(3^(4))]=33+11+3+1=48`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the exponent of 12 in 50!

Find the exponent of 80 in 200!

The exponent of 12 in 100! is

The exponent of 7 in 100!, is

Statement-I: The exponent of 3 in 100! is 48 . Statement-II: If n is a t ve integer and p is a prime number then exponent is [(n)/(p)]+[(n)/(p^(2))]+[(n)/(p^(3))]+...

the exponent of 15 in 100!, is

The exponent of 12 in 100! is 97 (b) 58 (c) 48 (d) None of these

Write the exponent of 3 in the prime factorization of 144.