Home
Class 12
MATHS
If .^(n)P(5)=20 .^(n)P(3), find the valu...

If `.^(n)P_(5)=20 .^(n)P_(3)`, find the value of n.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(.^{(n)}P_{5} = 20 .^{(n)}P_{3}\), we will follow these steps: ### Step 1: Write the Permutation Formula The formula for permutations is given by: \[ ^{(n)}P_r = \frac{n!}{(n-r)!} \] Using this, we can express \(.^{(n)}P_{5}\) and \(.^{(n)}P_{3}\): \[ ^{(n)}P_{5} = \frac{n!}{(n-5)!} \] \[ ^{(n)}P_{3} = \frac{n!}{(n-3)!} \] ### Step 2: Set Up the Equation Substituting these expressions into the original equation: \[ \frac{n!}{(n-5)!} = 20 \cdot \frac{n!}{(n-3)!} \] ### Step 3: Cancel \(n!\) Since \(n!\) appears in both sides of the equation, we can cancel it out (assuming \(n! \neq 0\)): \[ \frac{1}{(n-5)!} = 20 \cdot \frac{1}{(n-3)!} \] ### Step 4: Rewrite the Factorials Rearranging gives us: \[ (n-3)(n-4) = 20 \] This is because \((n-3)! = (n-3)(n-4)(n-5)!\). ### Step 5: Expand and Rearrange Expanding the left side: \[ n^2 - 7n + 12 = 20 \] Now, rearranging gives: \[ n^2 - 7n - 8 = 0 \] ### Step 6: Factor the Quadratic Equation Next, we can factor the quadratic equation: \[ (n - 8)(n + 1) = 0 \] ### Step 7: Solve for \(n\) Setting each factor to zero gives us: \[ n - 8 = 0 \quad \text{or} \quad n + 1 = 0 \] Thus, we find: \[ n = 8 \quad \text{or} \quad n = -1 \] ### Step 8: Determine Validity of Solutions Since \(n\) must be a non-negative integer (as it represents the total number of items in permutations), we discard \(n = -1\). Therefore, the only valid solution is: \[ n = 8 \] ### Final Answer The value of \(n\) is \(8\). ---

To solve the equation \(.^{(n)}P_{5} = 20 .^{(n)}P_{3}\), we will follow these steps: ### Step 1: Write the Permutation Formula The formula for permutations is given by: \[ ^{(n)}P_r = \frac{n!}{(n-r)!} \] Using this, we can express \(.^{(n)}P_{5}\) and \(.^{(n)}P_{3}\): ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If ^(n)P_(4)=360, find the value of n

If .^(n)P_(4): .^(n)P_(5) = 1:2 , find the value of n.

If ^nP_5=20xx ^P_3 , find the value of n.

If .^(n)P_(100)=.^(n)P_(99) . Then find the value of n.

If ^(n )P_(7)=42.^(n)P_(5) find n

If .^(n)P_(3)=720 , then find the value of .^(11)P_(n) .

If ""^(n)P_(5)=9times^(n-1)P_(4), then the value of n is

If .^(m+n)P_(2)=90 and .^(m-n)P_(2)=30 , find the value of m and .

If .^(n)P_(3)+.^(n)C_(n-2)=14n , the value of n is