Home
Class 12
MATHS
(a) If .^(22)P(r+1):^(20)P(r+2)=11 : 52,...

(a) If `.^(22)P_(r+1):^(20)P_(r+2)=11 : 52`, find r.
(b) If `.^(56)P_(r+6):^(54)P_(r+3)=30800: 1`, find r.

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given problems step by step. ### Part (a) We are given the ratio: \[ \frac{^{22}P_{r+1}}{^{20}P_{r+2}} = \frac{11}{52} \] Using the formula for permutations, we have: \[ ^{n}P_{r} = \frac{n!}{(n-r)!} \] So, we can write: \[ ^{22}P_{r+1} = \frac{22!}{(22 - (r + 1))!} = \frac{22!}{(21 - r)!} \] And, \[ ^{20}P_{r+2} = \frac{20!}{(20 - (r + 2))!} = \frac{20!}{(18 - r)!} \] Now substituting these into the ratio: \[ \frac{\frac{22!}{(21 - r)!}}{\frac{20!}{(18 - r)!}} = \frac{11}{52} \] This simplifies to: \[ \frac{22! \cdot (18 - r)!}{20! \cdot (21 - r)!} = \frac{11}{52} \] Now, we can simplify \( \frac{22!}{20!} = 22 \times 21 \): \[ \frac{22 \times 21 \cdot (18 - r)!}{(21 - r)(20 - r)(19 - r)(18 - r)!} = \frac{11}{52} \] Canceling \( (18 - r)! \): \[ \frac{22 \times 21}{(21 - r)(20 - r)(19 - r)} = \frac{11}{52} \] Cross-multiplying gives: \[ 52 \cdot 22 \cdot 21 = 11 \cdot (21 - r)(20 - r)(19 - r) \] Calculating \( 52 \cdot 22 \cdot 21 \): \[ 52 \cdot 22 = 1144 \quad \text{and} \quad 1144 \cdot 21 = 24024 \] So we have: \[ 24024 = 11 \cdot (21 - r)(20 - r)(19 - r) \] Dividing both sides by 11: \[ 2184 = (21 - r)(20 - r)(19 - r) \] Now we can solve for \( r \). We can test values for \( r \) to find a suitable integer solution. After testing, we find: If \( r = 7 \): \[ (21 - 7)(20 - 7)(19 - 7) = 14 \cdot 13 \cdot 12 = 2184 \] Thus, \( r = 7 \) is a solution. ### Part (b) We are given the ratio: \[ \frac{^{56}P_{r+6}}{^{54}P_{r+3}} = \frac{30800}{1} \] Using the permutation formula: \[ ^{56}P_{r+6} = \frac{56!}{(56 - (r + 6))!} = \frac{56!}{(50 - r)!} \] And, \[ ^{54}P_{r+3} = \frac{54!}{(54 - (r + 3))!} = \frac{54!}{(51 - r)!} \] Substituting into the ratio gives: \[ \frac{\frac{56!}{(50 - r)!}}{\frac{54!}{(51 - r)!}} = 30800 \] This simplifies to: \[ \frac{56! \cdot (51 - r)!}{54! \cdot (50 - r)!} = 30800 \] Now, simplifying \( \frac{56!}{54!} = 56 \times 55 \): \[ \frac{56 \times 55 \cdot (51 - r)!}{(50 - r)!} = 30800 \] This can be rewritten as: \[ 56 \times 55 \cdot (51 - r) = 30800 \] Calculating \( 56 \times 55 \): \[ 56 \times 55 = 3080 \] So we have: \[ 3080 \cdot (51 - r) = 30800 \] Dividing both sides by 3080: \[ 51 - r = 10 \] Thus: \[ r = 41 \] ### Final Answers (a) \( r = 7 \) (b) \( r = 41 \)

Let's solve the given problems step by step. ### Part (a) We are given the ratio: \[ \frac{^{22}P_{r+1}}{^{20}P_{r+2}} = \frac{11}{52} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If 22P_(r+1):^(20)P_(r+2)=11:52, find r

If ""^(15)P_(r-1): ""^(16)P_(r-2)=3:4 , find r.

If ""^(10)P_(r) = 720, find r.

(i) If ""^(5)P_(r)=2xx""^(6)P_(r-1) , find r. (ii) If ""^(20)P_(r)=13xx""^(20)P_(r-1) , find r. (iii) If ""^(11)P_(r)=""^(12)P_(r-1) , find r.

If .^(6)P_(r): .^(6)P_(5) = 1:2 , find the value of r.