Home
Class 12
MATHS
Prove that the determinant Delta =|{:...

Prove that the determinant `Delta =|{:(x,,sintheta,,cos theta),(-sin theta,,-x,,1),(cos theta,,1,,x):}|` is independent of `theta`.

Text Solution

Verified by Experts

Expanding along the first row we get
`Delta =|{:(x,,sin0,,cos 0),(-sin 0,,-x,,1),(cos 0,,1,,x):}|`
`=x(-x^(2)-1) -sin 0( -x sin 0- cos 0)`
` + cos 0 (-sin 0 +x cos 0)`
`=-x^(3) +x + x sin^(2)0 + sin 0 cos 0 -sin 0 cos + x cos^(2) 0`
`= -x^(3) + x+ x(sin^(2) 0+ cos^(2)0 )`
`= -x^(3) + 2x`
Hence `Delta ` is independent of 0.
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the determinant |(x,sin theta,cos theta),(-sin theta,-x,1),(cos theta,1,x)| is independent of theta

Prove that the determinant |{:(x,sintheta,costheta),(-sintheta,-x,1),(costheta,1,x):}| is independent of theta .

Prove that the determinant |[x,sin theta,cos theta],[-sin theta,-x,1],[cos theta,1,x]| is independent of

Prove that the determinant det[[-sin theta,-x,1cos theta,1,x]]

,x,sin theta,cos theta-sin theta,-x,1cos theta,1,x]|=8, write the value

Prove that the determinant |[x, sintheta,costheta],[-sintheta,-x,1],[costheta,1,x]| is independent of theta

Prove that the determinate abs([x,sintheta,costheta],[-sintheta,-x,1],[costheta,1,x]) is independent of theta

Prove that the determinant [x sin theta cos theta-sin theta-x1cos theta1x] is independent of theta.

If Delta_(1) =|{:(x, sin theta, cos theta),(-sin theta, -x, 1),(cos theta, 1,x):}| and Delta_(2) =|{:(x, sin 2theta, cos 2theta),(-sin 2theta, -x, 1),(cos 2theta, 1,x):}|, x ne 0 , then for all theta in (0, pi/2) , Then, Delta_(1) + Delta_(2) =-2x^(k) . The value of k is ________.