Home
Class 12
MATHS
The parameter on which the value of the ...

The parameter on which the value of the determinant `|1a a^2"cos"(p-d)xcosp x"cos"(p+d)x"sin"(p-d)xsinp x"sin"(p+d)x|` does not depend is `a` b. `p` c. `d` d. `x`

Text Solution

Verified by Experts

`"Let " Delta|{:(1,,a,,a^(2)),(cos (p-d)x ,,cos px,,cos(p+d)x),(sin (p-d)x,,sin px,,sin (p+d)x):}|`
Expanding along first row we get, `Delta =1` [cos px sin (p+d)x- cos (p+ d) x sin px]
-a [cos (p-d)x sin (p+d)x - cos (p+d) x sin (p-d)x]
`+a^(2) `[cos (p-d) x sin px - cos px sin (p-d)x]
=sin [(p-d)x -px] -a sin (p-d) x -(p-d)x]
`=a^(2)` sin [px -(p-d) x]
=sin (dx) -a sin (2dx) + `a^(2)` sin (dx)
This is independent of p.
Promotional Banner

Similar Questions

Explore conceptually related problems

The parameter on which the value of the determinant det[[a,a^(2)cos(p-d)x,cos px,cos(p+d)xsin(p-d)x,sin px,sin(p+d)x]] does not depend is a b.p c.d.x

If the roots of the given equation (cos p-1)x^(2)+(cos p)x+sin p=0 are real if

Differentiate the following with respect of x:(ax^(2)+sin x)(p+q cos x)

cos x+cos^(2)x+cos^(3)x=1 and a sin^(6)x+b sin^(4)x+c sin^(2)x+d=0 and a>0 then a+b+c+d=

The differentiation of sin x with respect to x is cos x* i.e.(d)/(dx)(sin x)=cos x

The differentiation of cos x with respect to x is -sin x. i.e.(d)/(dx)(cos x)=sin x

(d)/(dx)[(sin x)/(1+cos x)]=

Ifcos x+cos^(2)x=1 and a sin^(12)x+b sin^(10)x+c sin^(8)x+d sin^(6)x then (b+c)/(a+d)=

Differentiate (a cos x+b sin x+c)/(sin x)+x^(n)cos x