Home
Class 12
MATHS
If x + y + z = 0, prove that |(ax,by,cz...

If `x + y + z = 0,` prove that `|(ax,by,cz),(cy,az,bx),(bz,cx,ay)|=xyz|(a,b,c),(c,a,b),(b,c,a)|`

Text Solution

Verified by Experts

since the determinant is symmmetrical it is easier to expand by Sarrus rule.
` |{:(ax,,by,,cz),(cy ,,az,,bx),(bz,,cx,,ay):}|`
`= xyz (a^(3)+b^(3)+c^(3)) - abc (x^(3) +y^(3)+z^(3))`
`= xyz (a^(3) +b^(3) +c^(3) -3 abc)`
`-abc (x^(3) +y^(3) +z^(3) -3xyz)`
`=xyz ( a^(3) +b^(3) +c^(3) -3abc) -abc (x+y+z)`
` xx (x^(2) +y^(2) +z^(2) -xy -yz -zx)`
` =xyz (a^(3) +b^(3) +c^(3)-3abc)`
`(:' x+y + z=0)`
` =xyz|{:(a,,b,,c),(c ,,a,,b),(b,,c,,a):}|`
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that |(0,x,y,z),(-x,0,c,b),(-y,-c,0,a),(-z,-b,-a,0)|=(ax-by+cz)^2

x,a,x+ay,b,y+bz,c,z+c]|=0

If a^(x)=b,b^(y)=c and c^(z)=a, prove that xyz=1

Prove that: |(a,b, ax+by),(b,c,bx+cy), (ax+by, bx+cy,0)|=(b^2-a c)(a x^2+2b x y+c y^2) .

det[[ Prove that: ,b,ax+bya,c,bx+cyax+by,bx+cy,0]]=(b^(2)-ac)(ax^(2)+2bxy+cy^(2))

If (x)/(b-c)=(y)/(c-a)=(z)/(a-b), prove that ax+by+cz=0

det[[ Prove that ax-by-cz,ay+bx,cx+azay+bx,by-cz-ax,bz+cycx+az,bz+cy,cz-ax-by]]=(x^(2)+y^(2)+z^(2))(a^(2)+b^(2)+c^(2))(ax+by+cz)

prove that |{:((a-x)^(2),,(a-y)^(2),,(a-z)^(2)),((b-x)^(2),,(b-y)^(2),,(b-z)^(2)),((c-x)^(2),,(c-y)^(2),,(c-z)^(2)):}| |{:((1+ax)^(2),,(1+bx)^(2),,(1+cx)^(2)),((1+ay)^(2),,(1+by)^(2),,(1+cy)^(2)),((1+az)^(2),,(1+bx)^(2),,(1+cz)^(2)):}| =2 (b-c)(c-a)(a-b)xx (y-z) (z-x)(x-y)

Prove that |{:(x_1,y_1,1),(ax_1+bx_2+cx_3,ay_1+by_2+cy_3,a+b+c),(-ax_1+bx_2+cx_3,-ay_1+by_2+cy_2,-a+b+c):}|=0

If the system of equations ax + by + c = 0,bx + cy +a = 0, cx + ay + b = 0 has infinitely many solutions then the system of equations (b + c) x +(c + a)y + (a + b) z = 0(c + a) x + (a+b) y + (b + c) z = 0(a + b) x + (b + c) y +(c + a) z = 0 has