Home
Class 12
MATHS
consider the fourth -degree polynomial e...

consider the fourth -degree polynomial equation
`|{:(a_(1)+b_(1)x,,a_(1)x^(2)+b_(1),,c_(1)),(a_(2)+b_(2)x^(2),,a_(2)x^(2)+b_(2),,c_(2)),(a_(3)+b_(3)x^(2),,a_(3)x^(2)+b_(3),,c_(3)):}|=0`
Without expanding the determinant find all the roots of the equation.

Text Solution

Verified by Experts

`|{:(a_(1)+b_(1)x,,a_(1)x^(2)+b_(1),,c_(1)),(a_(2)+b_(2)x^(2),,a_(2)x^(2)+b_(2),,c_(2)),(a_(3)+b_(3)x^(2),,a_(3)x^(2)+b_(3),,c_(3)):}|=0 ("As " C_(1) " and " C_(2) " are indentical")`
So `x= +-1` are roots of the given equation . From Sarrus rule we observe that the degree of equation is 4.
Promotional Banner

Similar Questions

Explore conceptually related problems

If x in R,a_(i),b_(i),c_(i) in R for i=1,2,3 and |{:(a_(1)+b_(1)x,a_(1)x+b_(1),c_(1)),(a_(2)+b_(2)x,a_(2)x+b_(2),c_(2)),(a_(3)+b_(3)x,a_(3)x+b_(3),c_(3)):}|=0 , then which of the following may be true ?

The determinant |(b_(1)+c_(1),c_(1)+a_(1),a_(1)+b_(1)),(b_(2)+c_(2),c_(2)+a_(2),a_(2)+b_(2)),(b_(3)+c_(3),c_(3)+a_(3),a_(3)+b_(3))|

Show that |{:(ma_(1),b_(1),nc_(1)),(ma_(2),b_(2),nc_(2)),(ma_(3),b_(3),nc_(3)):}|=-mn|{:(c_(1),b_(1),a_(1)),(c_(2),b_(2),a_(2)),(c_(3),b_(3),a_(3)):}|

Show that |[a_(1),b_(1),-c_(1)],[-a_(2),-b_(2),c_(2)],[a_(3),b_(3),-c_(3)]|=|[a_(1),b_(1),c_(1)],[a_(2),b_(2),c_(2)],[a_(3),b_(3),c_(3)]|

Cosnsider the system of equation a_(1)x+b_(1)y+c_(1)z=0, a_(2)x+b_(2)y+c_(2)z=0, a_(3)x+b_(3)y+c_(3)z=0 if |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0 , then the system has

if w is a complex cube root to unity then value of Delta =|{:(a_(1)+b_(1)w,,a_(1)w^(2)+b_(1),,c_(1)+b_(1)bar(w)),(a_(2)+b_(2)w,,a_(2)w^(2)+b_(2),,c_(2)+b_(2)bar(w)),(a_(3)+b_(3)w,,a_(3)w^(2)+b_(3),,c_(3)+b_(3)bar(w)):}| is

if quad /_=[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

The value of the determinant Delta = |(1 + a_(1) b_(1),1 + a_(1) b_(2),1 + a_(1) b_(3)),(1 + a_(2) b_(1),1 + a_(2) b_(2),1 + a_(2) b_(3)),(1 + a_(3) b_(1) ,1 + a_(3) b_(2),1 + a_(3) b_(3))| , is

Consider the system of equations a_(1) x + b_(1) y + c_(1) z = 0 a_(2) x + b_(2) y + c_(2) z = 0 a_(3) x + b_(3) y + c_(3) z = 0 If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =0 , then the system has