Home
Class 12
MATHS
Prove that |(sin alpha,cos alpha,sin(alp...

Prove that `|(sin alpha,cos alpha,sin(alpha+delta)),(sin beta,cos beta,sin(beta+delta)),(sin gamma,cos gamma,sin(gamma+delta))|=0`

Text Solution

Verified by Experts

`|{:(sin alpha,,cos alpha,,sin(alpha+delta)),(sin beta,,cosbeta,,sin(beta+delta)),(sin gamma ,,cos gamma,,sin (gamma + delta)):}|`
`|{:(sin alpha,,cos alpha,,sin alpha cos delta + sin delta cos alpha),(sin beta,,cosbeta,,sin beta cos delta+ sin delta cos beta),(sin gamma ,,cos gamma,,sin gamma cos delta+sin delta cos gamma):}|`
`|{:(sin alpha,,cos alpha,,0),(sin beta,,cosbeta,,0),(sin gamma ,,cos gamma,,0):}| [C_(3)to C_(3) cos deltaC_(1) -sin deltaC_(2)]`
`=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

|(sin alpha, cosalpha,sin(alpha+delta)),(sinbeta, cos beta,sin(beta+delta)),(singamma,cosgamma,sin(gamma+delta))|=

Prove that det [[sin alpha, cos alpha, sin (alpha + delta) sin beta, cos beta, sin (beta + delta) sin gamma, cos gamma, sin (gamma + delta)]] = 0

Without expanding evaluate the determinant det[[sin alpha,cos alpha sin(alpha+delta)sin beta,cos beta,sin(beta+delta)sin gamma,cos gamma,sin(gamma+delta)]]

Without expanding evaluate the determinant |sin alpha cos alpha sin(alpha+delta)sin beta cos beta sin(beta+delta)sin gamma cos gamma sin(gamma+delta)|

sin alpha, cos alpha, cos (alpha + delta) sin beta, cos beta, cos (beta + delta) sin gamma, cos gamma, cos (gamma + delta)] | = 0

Without expanding,show that the value of each of the determinants is zero: det[[sin alpha,cos alpha,cos(alpha+delta)sin beta,cos beta,cos(beta+delta)sin gamma,cos gamma,cos(gamma+delta)]]

If /_\ = |[sinalpha, cosalpha, sin(alpha+delta)],[sinbeta, cosbeta, sin(beta+delta)],[singamma, cosgamma, sin(gamma+delta)]| then prove that /_\ is independent of alpha, beta, gamma and delta.

If Delta=|(sin alpha, cos alpha, sin alpha+cos beta),(sin beta, cos alpha, sin beta+cos beta),(sin gamma, cos alpha, sin gamma+cos beta)| then Delta equals

If Delta = det [[sin alpha, cos alpha, sin alpha + cos alphasin beta, cos alpha, sin beta + cos betasin gamma, cos alpha, sin gamma + cos beta]] then Delta

Delta=det[[0,sin alpha,-cos alpha-sin alpha,0,sin betacos alpha,-sin beta,0]]