Home
Class 12
MATHS
Using properties of determinants, sol...

Using properties of determinants, solve the following for x: `|x-2 2x-3 3x-4x-4 2x-9 3x-16 x-8 2x-27 3x-64|=0`

Text Solution

Verified by Experts

`Delta =|{:(x-2,,2x-3,,3x-4),(x-4,,2x-9,,3x-16),(x-8,,2x-27,,3x-64):}|=0`
Applying `R_(2) to R_(2) " and " R_(3) to R_(3) to R_(3) -R_(1)` we get
`" or " Delta = |{:(x-2,,2x-3,,3x-4),(-2,,-6,,-12),(-6,,-24,,-60):}|=0`
` rArr |{:(x-2,,2x-3,,3x-4),(1,,3,,6),(1,,4,,10):}|=0`
(Taking -2 and -6 common from`R_(2) " and "R_(3)` respectively)
`rArr (x-2). 6 - (2x-3). 4 + (3x-4).1=0`
`" or " x=4`
Promotional Banner

Similar Questions

Explore conceptually related problems

Using properties of determinants, solve the following for x: |[x-2, 2x-3, 3x-4],[x-4, 2x-9, 3x-16],[ x-8, 2x-27, 3x-64]|=0

Solve :det[[x-2,2x-3,3x-4x-4,2x-9,3x-16x-8,2x-27,3x-64]]=0

Solve for xdet[[x-2,2x-3,3xx-4x-4,2x-9,3x-16x-8,2x-27,3x-64]]=0

Solve: the [[x-2.2x-3.3x-4x-4.2x-9.3x-16x-8.2x-27.3x-64]] = 0

With the help of determinants , solve the following systems of equations : 2x-y=-2 , 3x+4y+8=0

Solve for x: (x-2)/4+2x=3x+10

Solve for x: (8x-1)/2+3x-4=(1+2x)/3