Home
Class 12
MATHS
prove that [ [a-b-c , 2a , 2a ] , [2b , ...

prove that `[ [a-b-c , 2a , 2a ] , [2b , b-c-a , 2b ] ,[2c ,2c,c-a-b]]`= `(a+b+c)^3`

Text Solution

Verified by Experts

Applying `C_(1) to C_(1) -C_(2) " and "C_(2) to C_(2)-C_(3)` and taking (a+b+c) common from each of `C_(1) " and "C_(2)` we get
`D= (a+b+c)^(2) xx |{:(-1 ,,0,,2a),(1,,-1,,2a),(0,,1,,c-a-b):}|`
`" Now " R_(3) to R_(3) + R_(2)` gives
`D= (a+b+c)^(2) xx |{:(-1 ,,0,,2a),(1,,-1,,2a),(0,,0,,(c+a+b)):}|`
Expanding along `R_(3)` we get
`D=(a+b+c)^(2) (a+b+c) =(a+b+c)^(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: |[a-b-c, 2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3

Solve the determinant using properties |[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]| = (a+b+c)^3

det[[ prove that ,2aa-b-c,2a,2a2b,b-c-a,2b2c,2c,c-a-b]]=(a+b+c)^(3)

evaluate: |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|

Prove that |[a^2, a^2-(b-c)^2, bc],[b^2, b^2-(c-a)^2, ca],[c^2, c^2-(a-b)^2, ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

If |(a-b-c, 2a, 2a),(2b, b-a-c, 2b),(2c, 2c, c-a-b)|=(a+b+c)(x+a+b+c^2) then thhe value of x is equal to (A) -2(a+b+c) (B) a+b+c (C) -(a+b+c) (D) 2(a+b+c)