Home
Class 12
MATHS
If a, b and c are real numbers, and Delt...

If a, b and c are real numbers, and `Delta=|b+cc+a a+b c+a a+bb+c a+bb+cc+a|=0` .Show that either `a" "+" "b" "+" "c" "=" "0" "or" "a" "=" "b" "=" "c` .

Text Solution

Verified by Experts

` Delta=|{:(b+c,,c+a,,a+b),(c+a,,a+b,,b+c),(a+b,,b+c,,c+a):}|`
Applying `R_(1) to R_(1)+R_(2)+R_(3)` we have
` Delta=|{:(2(a+b+c),,2(a+b+c),,2(a+b+c)),(c+a,,a+b,,b+c),(a+b,,b+c,,c+a):}|`
`=2 (a+b+c) |{:(1,,1,,1),(c+a,,b-c,,b-a),(a+b,,c-a,,c-b):}|`

Applying `C_(2) to C_(2)-C_(1) " and "C_(3) to C_(3)-C_(1)` we have
`Delta =2(a+b+c) |{:(1,,0,,0),(c+a,,b-c,,b-a),(a+b,,c-a,,c-b),(,,,,):}|`
Expanding along `R_(1)` we have
`Delta =2 (a+b+c) (1) [(b-c)(c-b)-(b-a)(c-a)]`
`=2 (a+b+c) [-b^(2)-c^(2)+2bc-bc+ba+ac-a^(2)]`
`=2 (a+b+c) [ab+bc+ca-a^(2)-b^(2)-c^(2)]`
It is given that `Delta =0` Therefore,
`(a+b+c) [ab+bc+ca-a^(2)-b^(2)-c^(2)]=0`
`" or " (1//2)(a+b+c) [(a-b)^(2)+(b-c)^(2)+(c-a)^(2)=0`
`" or Either " a+b+c =0`
` " or " (a-b)^(2) +(b-c)^(2) +(c-a)^(2)=0`
` rArr " Either " a+b+c =0 " or " a=b=c`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b and c are real numbers,and Delta=det[[b+c,c+a,a+bc+a,a+b,b+ca+b,b+c,c+a]] either a+b+c=0 or a=b,=c

If a ,\ b ,\ c are real numbers such that |b+cc+a a+b c+a a+bb+c a+bb+cc+a|=0 , then show that either a+b+c=0 or, a=b=c .

- aa bc a - b - c - - bb - c - c

Prove: |b+c a a b c+a b cc a+b|=4a b c

Prove that |b+c a a b c+a b cc a+b|=4a b c

If a,b,c are real numbers such that c(a+b+c)<0, then b^(2)-4ac is

a,b and c are distinct real numbers such that a:(b+c)=b:(c+a)

If a ,b , c are nonzero real numbers such that |b cc a a b c a a bb c a bb cc a|=0,t h e n 1/a+1/(bomega)+1/(comega^2)=0 b. 1/a+1/(bomega^2)+1/(comega^)=0 c. 1/(aomega)+1/(bomega^2)+1/c=0 d. none of these