Home
Class 12
MATHS
Prove that |{:(x^(2),,x^(2)-(y-z)^(2),,y...

Prove that `|{:(x^(2),,x^(2)-(y-z)^(2),,yz),(y^(2),,y^(2)-(z-x)^(2),,zx),(z^(2),,z^(2)-(x-y)^(2),,xy):}|`
`=(x-y) (y-z) (z-x)(x+y+z) (x^(2)+y^(2)+z^(2))`

Text Solution

Verified by Experts

we have
`Delta =|{:(x^(2),,x^(2)-(y-z)^(2),,yz),(y^(2),,y^(2)-(z-x)^(2),,zx),(z^(2),,z^(2)-(x-y)^(2),,xy):}|`
Applying `C_(2) to C_(2) -2 C_(1) -2C_(3)` we get
`Delta =|{:(x^(2),,-(x^(2)+y^(2)+z^(2)),,yz),(y^(2),,-(x^(2)+y^(2)+z^(2)),,zx),(z^(2),,-(x^(2)+y^(2)+z^(2)),,xy):}|`
`=- (x^(2) +Y^(2) +z^(2)) |{:(x^(2),,1,,yz),(y^(2),,1,,zx),(z^(2),,1,,xy):}|`
Multiplying `R_(1),R_(2) " and " R_(3) by x, y` and z, respectively we get
`Delta =- ((x^(2)+y^(2)+z^(2)))/(xyz) |{:(x^(3),,x,,yz),(y^(3),,y,,zx),(z^(3),,z,,xy):}|`
`=- (x^(2) +y^(2) +z^(2)) |{:(x^(3),,x,,1),(y^(3),,y,,1),(z^(3),,z,,1):}| "( Taking xyz common from " c_(3)")"`
`=(x^(2)+y^(2)+z^(2)) |{:(1,,x,,x^(3)),(1,,y,,y^(3)),(1,,z,,z^(3)):}| "(Applying " C_(1) hArr C_(3)")"`
` =(x-y) (y-z) (z-x) (x+y+z) (x^(2) +y^(2)+z^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

|(x^(2),y^(2)+z^(2),yz),(y^(2),z^(2)+x^(2),zx),(z^(2),x^(2)+y^(2),xy)| is divisible by

Prove that : |{:((y+z)^(2),x^(2),x^(2)),(y^(2),(x+z)^(2),y^(2)),(z^(2),z^(2),(x+y)^(2)):}|=2xyz (x+y+z)^(3)

[[x,x^(2),yzy,y^(2),zxz,z^(2),xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

prove that: |(y^(2)z^(2),yz,y+z),(z^(2)x^(2),zx,z+x),(x^(2)y^(2),xy,x+y)|=0

Prove that : =2|{:(1,1,1),(x,y,rz),(x^(2),y^(2),z^(2)):}|=(x-y)(y-z)(z-x)

Prove that |x^2x^2-(y-z)^2y z y^2y^2-(z-x)^2z x z^2z^2-(x-y)^2x y|=(x-y)(y-z)(z-x)(x+y+z)(x^2+y^2+z^2)dot

The value of (x^(2)-(y-z)^(2))/((x+z)^(2)-y^(2))+(y^(2)-(x-z)^(2))/((x+y)^(2)-z^(2))+(z^(2)-(x-y)^(2))/((y+z)^(2)-x^(2))

(x-y-z)^(2)-(x^(2)+y^(2)+z^(2))=2(yz-zx-xy)

Prove that |[x,x^(2),x^(4)],[y,y^(2),y^(4)],[z,z^(2),z^(4)]|=xyz(x-y)(y-z)(z-x)(x+y+z)