Home
Class 12
MATHS
If a,b,c are all distinct and |[a,a^3,a^...

If a,b,c are all distinct and `|[a,a^3,a^4-1],[b,b^3,b^4-1],[c,c^3,c^4-1]|` =0, show that abc(ab+bc+ac) = a+b+c

Text Solution

Verified by Experts

we have `|{:(a,,a^(3),,a^(4)),(b,,b^(3),,b^(4)),(c,,c^(3),,c^(4)):}|-|{:(a,,a^(3),,1),(b,,b^(3),,1),(c,,c^(3),,1):}|=0 "(Splitting w.r.t " C_(3)")"`
`:. Abc |{:(1,,a^(2),,a^(3)),(1,,b^(2),,b^(3)),(1,,c^(2),,c^(3)):}|-|{:(1,,a,,a^(3)),(1,,b,,b^(3)),(1,,c,,c^(3)):}|=0`
`rArr abc(a -b) (b-c) (c-a) (ab+bc+ca)`
`-(a-b)(b-c) (c-a)(a+b+c) =0`
`rArr abc (ab+bc+ca) -(a+b+c)=0`
`(As a,b,c " are distinct)"`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(1//3)+b^(1//3)+c^(1//3)=0 , then show that (a+b+c)^(3)=27 abc .

If a,b,are distinct,show that [[1,1,1a,b,ca^(3),b^(3),c^(3)]]=(b-c)*(c-a)*(a-b)(a+b+c)

If A = [[2,3],[-1,5]] , B = [[3,-1],[4,7]] and C = [[5,-1],[0,3]], show that A(B +C)=AB+AC

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

Sluppose a, b, c, in R and abc = 1, if A = [[3a, b, c ],[b, 3c, a ],[c, a, 3b]] is such that A ^(T) A = 4 ^(1//3) I and abs(A) gt 0, the value of a^(3) + b^(3) + c^(3) is

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If a,b, c are real and distinct numbers, then the value of ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/((a-b).(b-c).(c-a))is

Show that: ,3a,-a+b,-a+c-b+a,3b,-b+c-c+a,-c+b,3c]|=3(a+b+c)(ab+bc+ca)

If a+b+c = 4 and ab + bc + ca = 1, then the value of a^3+b^3+c^3-3abc is: यदि a+b+c = 4 और ab + bc + ca = 1 है, तो a^3+b^3+c^3-3abc का मान क्या होगा ?