Home
Class 12
MATHS
prove that |{:((b+c)^(2),,bc,,ac),(ba,,(...

prove that `|{:((b+c)^(2),,bc,,ac),(ba,,(c+a)^(2),,cb),(ca,,cb,,(a+b)^(2)):}|`
`|{:((b+c)^(2),,a^(2),,a^(2)),(b^(2),,(c+a)^(2),,b^(2)),(c^(2),,c^(2),,(a+b)^(2)):}| =2abc (a+b+c)^(3)`

Text Solution

Verified by Experts

Multiplying `R_(1)R_(2),R_(3)` by a,b,c respectively and dividing by abc we get `Delta =(1)/(abc)xx |{:(a(b+c)^(2),,ba^(2),,ca^(2)),(ab^(2),,b(c+a)^(2),,cb^(2)),(ac^(2),,bc^(2),,c(a+b)^(2)):}|`
Taking a,b,c common from` C_(1),C_(2) " and " C_(3) ` respectively we get
`Delta = |{:((b+c)^(2),,a^(2),,a^(2)),(b^(2),,(c+a)^(2),,b^(2)),(c^(2),,c^(2),,(a+b)^(2)):}|`
` " Now applying " C_(2) to C_(2) -C_(1),C_(3) to C_(3) -C_(1)` gives
`Delta =|{:((b+c)^(2),,(a+b+c)(a-b-c),,(a-b-c)(a+b+c)),(b^(2),,(c+a+c)(c+a-b),,0),(c^(2),,0,,(a+b+c)(a+b-c)):}|`
` (a+b+c)^(2) xx |{:((b+c)^(2),,a-b-c,,a-b-c),(b^(2),,c+a-b,,0),(c^(2),,0,,a+b-c):}|`
Applying `R_(1) to R_(1) -(R_(2)+R_(3))` and then taking 2 common from `R_(1)` we get
`Delta =2(a+b+c)^(2) xx |{:(bc,,-c,,-b),(b^(2),,c+a-b,,0),(c^(2),,0,,a+b-c):}|`
`" Now applying "C_(2) to bC_(2) +C_(1), C_(3) to cC_(3) +C_(1)` gives
`Delta =(2(a+b+c)^(2))/(bc) xx |{:(bc,,0,,0),(b^(2),,b(c+a),,b^(2)),(c^(2),,c^(2),,c(a+b)):}|`
`=(2(a+b+c)^(2))/(bc) bc[(bc +ba)(ca+cb)-b^(2)c^(2)]`
`=2(a+b+c)^(2) [bc(ac+bc+ab+a^(2)-bc)]`
`2abc (a+b+c)^(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ,,(b+c)^(2),a^(2),a^(2)b^(2),(c+a)^(2),b^(2)c^(2),c^(2),(a+b)^(2)]|=2abc(a+b+c)^(3)

Prove that: ,,(b+c)^(2),a^(2),a^(2)b^(2),(c+a)^(2),b^(2)c^(2),c^(2),(a+b)^(2)]|=2abc(a+b+c)^(3)

Prove that: |(b+c)^(2)a^(2)a^(2)b^(2)(c+a)^(2)b^(2)c^(2)c^(2)(a+b)^(2)|=2abc(a+b+c)^(3)

|[bc,ca,ab],[(b+c)^(2),(c+a)^(2),(a+b)^(2)],[a^(2),b^(2)c^(2)]|

Prove that |[-a^(2),ab,ac],[ba,-b^(2),bc],[ca,cb,-c^(2)]|=4a^(2)b^(2)c^(2)

Prove that : |{:(b^(2)c^(2),bc, b+c),(c^(2)a^(2),ca, c+a),(a^(2)b^(2),ab, a+b):}|=0

(a^(2)+b^(2))/(c),c,ca,(b^(2)+c^(2))/(a),ab,b,(c^(2)+a^(2))/(2)]|=4abc

Prove that |[(a+b)^(2),ca,bc],[ca,(b+c)^(2),ab],[bc,ab,(c+a)^(2)]|=2abc(a+b+c)^(3)

Without expanding the determinant , prove that |{:(a, a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=|{:(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3)):}|

Prove that |{:(a^(2), a^(2)-(b-c)^(2), bc), (b^(2), b^(2)-(c-a)^(2), ca), (c^(2), c^(2)-(a-b)^(2), ab):}|= (a^(2)+b^(2)+c^(2))(a-b)(b-c)(c-a)(a+b+c)