Home
Class 12
MATHS
show that the determinant |{:(a^(2)+...

show that the determinant
`|{:(a^(2)+b^(2)+c^(2),,bc+ca+ab,,bc+ca+ab),(bc+ca+ab,,a^(2)+b^(2)+c^(2),,bc+ca+ab),(bc+ca+ab,,bc+ca+ab,,a^(2)+b^(2)+c^(2)):}|`
is always non- negative.

Text Solution

Verified by Experts

`|{:(a^(2)+b^(2)+c^(2),,bc+ca+ab,,bc+ca+ab),(bc+ca+ab,,a^(2)+b^(2)+c^(2),,bc+ca+ab),(bc+ca+ab,,bc+ca+ab,,a^(2)+b^(2)+c^(2)):}|`
`=|underset(c" "a" "b)underset(b" "c" "a)(a" "b" "c)||underset(c" "a" "b)underset(b" "c" "a)(a" "b" "c)|`
Which is always non-negative.
Promotional Banner

Similar Questions

Explore conceptually related problems

a^(2)+b^(2)+2ab+2bc+2ca

2(bc cos A+ca cos B+ab cos C)=a^(2)+b^(2)+c^(2)

The value of the determinant |{:(1,a, a^(2)-bc),(1, b, b^(2)-ca),(1, c, c^(2)-ab):}| is…..

What is the determinant |(bc,a,a^(2)),(ca,b,b^(2)),(ab,c,c^(2))| equal to ?

What is the determinant |{:(bc,a,a^(2)),(ca,a,b^(2)),(ab,c,c^(2)):}| equal to ?

If a+b+c=5, a^(2)+b^(2)+c^(2)=6 then ab+bc+ca=?

If a+b+c=7, a^(2)+b^(2)+c^(2)=9 then, ab+bc+ca=?

if a^(2)+b^(2)+c^(2)=20 and a+b+c=0 then find ab+bc+ca