Home
Class 12
MATHS
" If " Delta (x)=|underset(9" "x" ...

`" If " Delta (x)=|underset(9" "x" "-7)underset(6" "4x" "3)(1" "x^(2)" "x^(2))|` then find the value of `overset(1)underset(0)(int)Delta (x) dx`
without expanding `Delta (x)`.

Text Solution

Verified by Experts

Taking x common from `C_(2)` then multiplying each element of `R_(1)` with x we get
`:. Delta (x)= |{:( x,,x^(2),,x^(3)),(6,,4,,3),(9,,1,,-7):}|`
`|{:(overset(1)underset(0)(int) xdx,,overset(1)underset(0)(int)x^(2)dx,,overset(1)underset(0)(int)x^(3)dx),(6,,4,,3),(9,,1,,-7):}|`
`|{:([[x^(2))/(2)]_(0)^(2),,[[x^(3))/(3)]_(0)^(1),,[[x^(4))/(4)]_(0)^(1)),(6,,4,,3),(9,,1,,-7):}|`
`= |{:(9,,1,,-7),(6,,4,,3),((1)/(2),,(1)/(3),,(1)/(4)):}|`
`=(1)/(12) |{:(6,,4,,3),(6,,4,,3),(9,,1,,-7):}|` (Multiplying each element of `R_(1)` with 12)
`=0" "(R_(1) " and "R_(2) " are identical")`
Promotional Banner

Similar Questions

Explore conceptually related problems

underset(1)overset(e)int (e^(x))/(x) (1 + x log x)dx

If I underset(1)overset(2)(int)log_(11)(x^3 - x^2 + 6x -5) dx, then:

Estimate the value of underset(0)overset(1)e^(x^(2))dx by using underset(0)overset(1)e^(x)dx .

The value of underset((-pi)/(2))overset((pi)/(2))(int) (1)/(1 + e^(sin x)) dx is :

If Delta(x)=|{:(a,b,c),(6,4,3),(x,x^(2),x^(3)):}| then find int_(0)^(1) Delta (x) dx.

The major product (X) of the reaction is: overset(H_(2),Ni)underset(Delta)rarr X