Home
Class 12
MATHS
If a,b and c are non- zero real numbe...

If a,b and c are non- zero real number then prove that
`|{:(b^(2)c^(2),,bc,,b+c),(c^(2)a^(2),,ca,,c+a),(a^(2)b^(2),,ab,,a+b):}| =0`

Text Solution

Verified by Experts

Applying `R_(1)to aR_(1),R_(2)to bR_(2) " and " R_(3) to cR_(3)` we get
`Delta =(1)/(abc)|{:(ab^(2)c^(2),,abc,,ab+ac),(a^(2)bc^(2),,abc,,bc+ab),(a^(2)b^(2)c,,abc,,ac+bc):}| `
`=(a^(2)b^(2)c^(2))/(abc) |{:(bc,,1,,ab+ac),(ac,,1,,bc+ab),(ab,,1,,ac+bc):}| `
Applying `C_(1) to C_(3) +C_(1)` and taking bc+ca+ab common we get
`Detla =abc (bc+ca+ab) |{:(bc,,1,,1),(ac,,1,,1),(ab,,1,,1):}| =0`
`{:' C_(2)" and " C_(2) " are identical "]`
Promotional Banner

Similar Questions

Explore conceptually related problems

|[b^(2)c^(2),bc,a-c],[c^(2)a^(2),ca,b-c],[a^(2)b^(2),ab,0]|=?

If a,b,&c are nonzero real numbers,then det[[b^(2)c^(2),bc,b+cc^(2)a^(2),ca,c+aa^(2)b^(2),ab,a+b]] is equal to

If a,b,c are non-zero real numbers then D=det[[b^(2)c^(2),bc,b+cc^(2)a^(2),ca,c+aa^(2)b^(2),ab,a+b]]=(A)abc(B)a^(2)b^(2)c^(2)(C)bc+ca+ab(D)0,

If a,b,c are non-zero real number such that |(bc,ca,ab),(ca,ab,bc),(ab,bc,ca)|=0, then

|[b^2c^2,bc,b+c] , [c^2a^2,ca,c+a] , [a^2b^2,ab,a+b]|=0

If a,b,c are non-zero real numbers such that 3(a^(2)+b^(2)+c^(2)+1)=2(a+b+c+ab+bc+ca) then a,b,c are in

If a,b,c are non-zero distinct real numbers and a+b+c=0, then (a^(2))/(2a^(2)+bc)+(b^(2))/(2b^(2)+ac)+(c^(2))/(2c^(2)+ab)

Prove that |[(a+b)^(2),ca,bc],[ca,(b+c)^(2),ab],[bc,ab,(c+a)^(2)]|=2abc(a+b+c)^(3)