Home
Class 12
MATHS
Let f(t)=|{:(cos t,,t,,1),(2 sin t,,t,,2...

` Let f(t)=|{:(cos t,,t,,1),(2 sin t,,t,,2t),(sin t,,t,,t):}|` .Then find `lim_(t to 0) (f(t))/(t^(2))`

Text Solution

Verified by Experts

we have
`f(t) = |{:(cos t,,t,,1),(2 sin t,,t,,2t),(sin t,,t,,t):}|`
`rArr (f(t))/(t^(2)) =(1)/(t^(2)) |{:(cos t,,t,,1),(2 sin t,,t,,2t),(sin t,,t,,t):}|`
`=|{:( cos t,,t,,1),( (2 sin t)/(t),,1,,2),((sin t)/(t),,1,,1):}|`
`"[Dividing " R_(2)" and "R_(3)" by "'t'"]"`
`rArr underset(t to 0)("lim") .(f(t))/(t^(2)) = |{:(underset(t to 0)("lim") cos t,,underset(t to 0)("lim t "),,underset(t to 0)("lim 1 ")),(underset(t to 0)("lim") . (2sin t)/(t) ,,underset(t to 0)("lim 1"),,underset( t to 0)("lim 2")),(underset( t to 0)("lim") . (sin t)/(t) ,,underset( t to 0)("lim 1"),,underset(t to 0)("lim 1 ")):}|`
`=|{:(1,,0,,1),(2,,1,,2),(1,,1,,1):}|" ""(" :' underset(t to 0)(" lim ") (sin t)/(t)=1)`
` =1(1-2)-0+1(2-1)`
`=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(t)=|[cost,t,1],[2sint,t,2t],[sint,t,t]| then find lim_(t->0) f(t)/t^2.

lim_(t tooo)t(sqrt (t^(2)+1)-t)

If x=a(sin t-t cos t),y=a sin t then find the value of (d^(2)y)/(dx^(2))

The value of lim_(t rarr0)(ln(cos(sin t)))/(t^(2)) is

Evaluate the following lim_(t to 1)(1-1/t)/(sin[pi(t-1)])

lim_(x rarr0)(t[sin t-t cos t])/(t^(2))

If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find (d^(2)y)/(dx^(2))

If x=a(cos2t+2t sin2t) and y=a(sin2t-2t cos2t), then find (d^(2)y)/(dx^(2))

If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find the value of (d^(2)y)/(dx^(2)) at t=(pi)/(4)