Home
Class 12
MATHS
it x(1)^(2) +2y(1)^(2)+3z(1)^(2)=x(2)^(2...

it `x_(1)^(2) +2y_(1)^(2)+3z_(1)^(2)=x_(2)^(2)+2y_(2)^(2)+3z_(2)^(2)=x_(3)^(2)+2y_(3)^(2)+3z_(3)^(2)=2 " and " x_(2)x_(3) +2y_(2)y_(3)+3z_(2)z_(3)=x_(3)x_(1)+2y_(3)y_(1)+3z_(3)z_(1)=x_(1)x_(2)+2y_(1)y_(2)+3z_(1)z_(2)=1`
Then find the value of `|{:(x_(1),,y_(1),,z_(1)),(x_(2),,y_(2),,z_(2)),(x_(3),,y_(3),,z_(3)):}|`

Text Solution

Verified by Experts

Let
`Delta= |{:(x_(1),,y_(1),,z_(1)),(x_(2),,y_(2),,z_(2)),(x_(3),,y_(3),,z_(3)):}|`
`:. Delta^(2)= Delta xx Delta`
`=|{:(x_(1),,y_(1),,z_(1)),(x_(2),,y_(2),,z_(2)),(x_(3),,y_(3),,z_(3)):}|xx |{:(x_(1),,y_(1),,z_(1)),(x_(2),,y_(2),,z_(2)),(x_(3),,y_(3),,z_(3)):}|`
` =(1)/(1xx2xx3) |{:(x_(1),,2y_(1),,z_(1)),(x_(2),,2y_(2),,z_(2)),(x_(3),,2y_(3),,z_(3)):}|xx |{:(x_(1),,y_(1),,z_(1)),(x_(2),,y_(2),,z_(2)),(x_(3),,y_(3),,z_(3)):}|`
`= (1)/(6) |{:(x_(1)^(2)+2y_(1)^(2)+3z_(1)^(2),,x_(1)x_(2)+2y_(1)y_(2)+3z_(1)z_(2),,x_(3)x_(1)+2y_(2)y_(3)+3z_(2)z_(3)),(x_(1)x_(2)+2y_(1)y_(2)+3z_(1)z_(2),,x_(2)^(2)+2y_(2)^(2)+3z_(2)^(2),,x_(2)x_(3)+2y_(2)y_(3)+3z_(3)z_(3)),(x_(3)x_(1)+2y_(3)y_(1)+3z_(3)z_(1),,x_(3)^(2)+2y_(3)^(2)+3z_(3)^(2),,):}|`
`=(1)/(6) |{:(2,,1,,1),(1,,2,,1),(1,,1,,2):}|`
`=(2)/(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

ax_(1)^(2)+by_(1)^(2)+cz_(1)^(2)=ax_(2)^(2)+by_(2)^(2)+cz_(2)^(2)=ax_(3)^(2)+by_(3)^(2)+cz_(3)^(2)=d,ax_(2)^(3)+by_(2)y_(3)+cz_(2)z_(3)=ax_(3)x_(1)+by then prove that det[[x_(1),y_(1),z_(1)x_(2),y_(2),z_(2)x_(3),y_(3),z_(3)]]=(d-f){((d+2f))/(abc)}^(1/2)

A=[[2,0,00,2,00,0,2]] and B=[[x_(1),y_(1),z_(1)x_(2),y_(2),z_(2)x_(3),y_(3),z_(3)]]

The value of |(2 y_(1)z_(1),y_(1) z_(2) + y_(2) z_(1),y_(1) z_(3) + y_(3) z_(1)),(y_(1) z_(2) y_(2) z_(1),2y_(2) z_(2),y_(2) z_(3) + y_(3) z_(2)),(y_(1) z_(3) + y_(3) z_(1),y_(2) z_(3) + y_(3) z_(2),2y_(3) z_(3))| , is

Find ((x^(2)-y^(2))^(3) + (y^(2) -z^(2))^(3)+ (z^(2) -x^(2))^(3))/((x-y)^(3) + (y-z)^(3) + (z-x)^(3))

If x^(2)+y^(2)+z^(2)=1 then the maximum value of x+2y+3z is

For x_(1), x_(2), y_(1), y_(2) in R if 0 lt x_(1)lt x_(2)lt y_(1) = y_(2) and z_(1) = x_(1) + i y_(1), z_(2) = x_(2)+ iy_(2) and z_(3) = (z_(1) + z_(2))//2, then z_(1) , z_(2) , z_(3) satisfy :

(x+1)/(3)=(y+2)/(1)=(z+1)/(2) and (x-2)/(1)=(y+2)/(2)=(z-3)/(3)