Home
Class 12
MATHS
Find the number of real root of the equa...

Find the number of real root of the equation `|0x-a x-b x+a0x-c x+b x+c0|=0,a!=b!=ca n db(a+c)> a c`

Text Solution

Verified by Experts

The correct Answer is:
three

Expanding Using Sarrus Rule
`Delta =(x-a)(x+b)(x-c)+(x-b)(x+a)(x+c)`
`=2x(x^(2)+ac-ab-bc)`
Now `Delta=0` gives x=0
or `x^(2) =b(a+c)-ac`
if b(a+c) `gt ac` we have three roots `0+- sqrt({b(a+c)-ac})`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the number of real root of the equation |[0,x-a, x-b],[ x+a,0,x-c],[ x+b, x+c,0]|=0,a!=b!=c andb(a+c)> a c

If a,b,c in R, then find the number of real roots of the equation x,c,-b-c,x,ab,-a,x]|=0

If a,b,c, in R, find the number of real root of the equation |{:(x,c,-b),(-c,x,a),(b,-a,x):}| =0

The roots of the equation (b-c)x^(2)+(c-a)x+(a-b)=0

both roots of the equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 are