Home
Class 12
MATHS
If alpha,beta,gamma are the roots of ...

If `alpha,beta,gamma` are the roots of `a x^3+b x^2+c x+d=0a n d|alphabetagammabetagammaalphagammaalphabeta|=0,alpha!=beta!=gamma` then find the equation whose roots are `alpha+beta-gamma,beta+gamma-alpha,a n dgamma+alpha-betadot`

Text Solution

Verified by Experts

The correct Answer is:
`ax^(3)-2bx^(2)+4cx-8d=0`

`|{:(alpha,,beta,,gamma),(beta,,gamma,,alpha),(gamma,,alpha,,beta):}|=(alpha+beta+gamma).(1)/(2)[(alpha-beta)^(2)+(beta-gamma)^(2)+(gamma-alpha)^(2)]=0`
since `alpha ne beta ne gamma` we have
`alpha +beta +gamma=0`
`:. Alpha +beta-gamma =-2gamma`
`beta+gamma-alpha=-2alpha`
`gamma+alpha-beta=-2beta`
`" Let " y=-2x`
`" or " x=(-y)/(2)` Therefore the required equation is
`alpha (-(y)/(3))^(3)+b(-(y)/(2))^(2)+c(-(y)/(2))+d=0`
`rArr (-a)/(8) y^(3)+(b)/(4)y^(2)-(c)/(l2)y+d=0`
`rArr ay^(3)-2by^(2)+4cy-8d=0` lt brgt `" or " ax^(3) -2bx^(2)+4cx -8d=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)|=

If alpha,beta,gamma are the roots of ax^(3)+bx^(2)+cx+d=0 and betaquad gammaquad alpha|=0,alpha!=beta!= then find the equation whose roots are alpha+beta-gamma,beta+gamma-alpha, and gamma+alpha-beta

If alpha, beta, gamma are the roots of ax ^ (3) + bx ^ (2) + cx + d = 0 and det [[alpha, beta, gammabeta, gamma, alphagamma, alpha, beta]] = 0, alpha ! = beta! = gamma, alpha + beta-gamma, beta + gamma-alpha, and gamma + alpha-beta

If alpha beta gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha,beta,gamma are the roots of x^(3)+2x^(2)+3x+8=0 then (alpha+beta)(beta+gamma)(gamma+alpha)=

If alpha, beta, gamma are the roots of x^3+px^2+qx+r=0 then alpha^(2)(beta+gamma)+beta^(2)(gamma+alpha)+gamma^(2)(alpha+beta)=

If alpha, beta, gamma are the roots of x^(3)-px^(2)+qx-r=0 then (alpha+beta)(beta+gamma)(gamma+alpha) =

If alpha,beta,gamma are the roots of x^(3)+3x+3=0 then alpha^(5)+beta^(5)+gamma^(5)=

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

If roots of x^(3)+5x^(2)-7x-1=0 are alpha,beta,gamma then the equation whose roots are alpha beta,beta gamma,gamma alpha, is.