Home
Class 12
MATHS
if omega!=1 is cube root of unity and x+...

if `omega!=1` is cube root of unity and x+y+z`!=`0 then `|[x/(1+omega),y/(omega+omega^2),z/(omega^2+1)],[y/(omega+omega^2),z/(omega^2+1),x/(1+omega)],[z/(omega^2+1),x/(1+omega),y/(omega+omega^2)]|`=0 if

Text Solution

Verified by Experts

As `1 + omega +omega^(2) =0 `
`D= |{:((x )/(1+ omega),,(y)/(omega+omega^(2)),,(z)/(omega^(2)+1)),((y)/(omega+omega^(2)),,(z)/(omega^(2)+1),,(x)/(1+omega)),((z)/(omega^(2)+1),,(x)/(1+omega),,(y)/(omega+omega^(2))):}|`
`=|{:(-(x)/(omega^(2)),,-y,,-(z)/(omega)),(-y,,-(z)/(omega),,-(x)/(omega^(2)),(-(z)/(omega),,-(x)/(omega^(2)),,-y):}|`
`=x^(3) +y^(3) +z^(3)-3xyz`
`=(1)/(2) (X+Y+Z) {(x-y)^(2)+(y-z)^(2)+(z-x)^(2)`
`rArr x=y=z" " "(":. x+y+z ne 0")"`
Promotional Banner

Similar Questions

Explore conceptually related problems

If omega!=1 is a cube root of unity and x+y+z!=0, then prove that |x/(1+omega)y/(omega+omega^2)z/(omega^2+1)y/(omega+omega^2)z/(omega^2+1)x/(1+omega)(z z)/(omega^2+1)x/(1+omega)y/(omega+omega^2)|=0 if x=y=z

if omega!=1 is cube root of unity and x+y+z!=0(x)/(1+omega),(y)/(omega+omega^(2)),(z)/(omega^(2)+1)(y)/(omega+omega^(2)),(z)/(omega^(2)+1),(x)/(1+omega)(z)/(omega^(2)+1),(x)/(1+omega),(y)/(omega+omega^(2))]|=0 if

If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =

If omega is cube roots of unity, prove that {[(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)]+[(omega,omega^2,1),(omega^2,1,omega),(omega,omega^2,1)]} [(1),(omega),(omega^2)]=[(0),(0),(0)]

if omega!=1 is a complex cube root of unity, and x+iy=|[1,i,-omega],[-I,1,omega^2],[omega,-omega^2,1]|

If omega is a complex cube root of unity then the matrix A = [(1, omega^(2),omega),(omega^(2),omega,1),(omega,1,omega^(2))] is a

If omega is a cube root of unity, prove that (1+omega-omega^2)^3-(1-omega+omega^2)^3=0