Home
Class 12
MATHS
Prove that the value of determinant |{...

Prove that the value of determinant `|{:(1,,omega,,omega^(2)),(omega ,,omega^(2),,1),( omega^(2),, 1,,omega):}|=0`
where `omega` is complex cube root of unity .

Text Solution

Verified by Experts

`Delta =|{:(1,,omega,,omega^(2)),(omega,,omega^(2),,1),(omega^(2),,1,,omega):}|`
Applying `R_(1) to omega R_(1)` we get
`Delta =(1)/(omega) |{:(omega,,omega^(2),,omega^(3)),(omega,,omega^(2),,1),(omega^(2),,1,,omega):}|`
`=(1)/(omega)|{:(omega,,omega^(2),,omega^(3)),(omega,,omega^(2),,1),(omega^(2),,1,,omega):}|`
`(As R_(1) " and " R_(2) "are identical )"`
`=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the determinant |(1,omega^(3),omega^(5)),(omega^(3),1,omega^(4)),(omega^(5),omega^(4),1)| , where omega is an imaginary cube root of unity, is

Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega,omega)| where omega is cube root of unity.

What is the value of |{:(" "1-i," "omega^(2)," "-omega),(" "omega^(2)+i," "omega," "-i),(1-2i-omega^(2),omega^(2)-omega,i-omega):}| , where omega is the cube root of unity ?

If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =

If omega is cube root of unit, then find the value of determinant |(1,omega^3,omega^2), (omega^3,1,omega), (omega^2,omega,1)|.

find the value of |[1,1,1],[1,omega^(2),omega],[1,omega,omega^(2)]| where omega is a cube root of unity