Home
Class 12
MATHS
Prove that |{:(a,,a^(2),,bc),(b ,,b^(2),...

Prove that `|{:(a,,a^(2),,bc),(b ,,b^(2),,ac),( c,,c^(2),,ab):}|``|{:(1,,1,,1),(a^(2) ,,b^(2),,c^(2)),( a^(3),, b^(3),,c^(3)):}|`

Text Solution

Verified by Experts

we have `Delta =|{:(a,,a^(2),,bc),(b,,b^(2),,ac),(c^(2),,c^(3),,ab):}|`
Multiplying `R_(1),R_(2) " and " R_(3) by a, b," and " c ` respectively we get
`Delta =(1)/(abc) |{:(a^(2),,a^(3),,abc),(b^(2),,b^(3),,abc),(c^(2),,c^(3),,abc):}|`
`=|{:(a^(2),,a^(3),,1),(b^(2),,b^(3),,1),(c^(2),,c^(3),,1):}|` (Taking abc common from `C_(3))`
`=- |{:(1,,a^(3),,a^(2)),(1,,b^(3),,b^(2)),(1,,c^(3),,c^(2)):}|" "(C_(1) hArr C_(3))`
`=|{:(1,,a^(2),,a^(3)),(1,,b^(2),,b^(3)),(1,,c^(2),,c^(3)):}|" "(C_(2) hArr C_(2))`
`=|{:(1,,1,,1),(a^(2),,b^(2),,c^(2)),(a^(3),,b^(3),,c^(3)):}| " " "(Taking transpose)"`
Promotional Banner

Similar Questions

Explore conceptually related problems

Without expanding the determinant , prove that |{:(a, a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=|{:(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3)):}|

Prove that |{:(1, a, a^(2)-bc),(1, b, b^(2)-ca), (1, c, c^(2)-ab):}|=0

Prove that |{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1):}|=1+a^(2)+b^(2)+c^(2) .

Prove that det[[1,a,a^(2)-bc1,b,b^(2)-ca1,c,c^(2)-ab]]=0

|[a,a^(2),bc],[b,b^(2),ca],[c,c^(2),ab]|=|[1,a^(2),a^(3)],[1,b^(2),b^(3)],[1,c^(2),c^(3)]|

Without expanding the determinant,prove ,a,a^(2),bcb,b^(2),cac,c^(2),ab]|=det[[1,a^(2),a^(3)1,b^(2),b^(3)1,c^(2),c^(3)]]

|(1,a^(2)+bc,a^(3)),(1,b^(2)+ac,b^(3)),(1,c^(2)+ab,c^(3))|=-(a-b)(b-c)(c-a)(a^(2)+b^(2)+c^(2))

Prove that Delta = |{:(1,,1,,1),(a,,b,,c),(bc+1^(2),,ac+b^(2),,ab+c^(2)):}| = 2(a-b)(b-c)(c-1)

Prove that : (i) |{:(a,c,a+c),(a+b,b,a),(b,b+c,c):}|=2 abc (ii) Prove that : |{:(a^(2),bc,ac+c^(2)),(a^(2)+ab,b^(2),ac),(ab,b^(2)+bc,c^(2)):}|=4a^(2)b^(2)c^(2)

Find the value of det[[1,a,a^(2)-bc1,b,b^(2)-ac1,c,c^(2)-ab]]