Home
Class 12
MATHS
" if " Delta = |{:(abc,,a(2),,c^(2)b),(a...

`" if " Delta = |{:(abc,,a_(2),,c^(2)b),(abc ,,c^(2)a,,ca^(2)),( abc,,a^(2)b,,b^(2)a):}| =0 , (a, b, c in R " and are all "`
different and non- zero ) the prove that `a+b+c=0`

Text Solution

Verified by Experts

`Delta =|{:(abc,,b^(2)c,,c^(2)b),(abc,,c^(2)a,,ca^(2)),(abc,,a^(2)b,,b^(2)a):}|=0`
Taking bc , ca and ab common from `R_(1),R_(2)" and " R_(3)` respectively we get
`:. (bc.ca.ab) |{:(a,,bc,,c),(b,,c,,a),(c,,a,,b):}|=0`
`rArr |{:(a,,bc,,c),(b,,c,,a),(c,,a,,b):}|=0`
`rArr -(a^(3)+b^(3)+c^(3)-3abc)=0`
`rArr (1)/(2) (a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)]=0`
`rArr a+b+c=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If =det[[abc,b^(2)c,c^(2)babc,c^(2)a,ca^(2)abc,c^(2)a,ca^(2)abc,a^(2)b,b^(2)a]]=0,(a,b,c in R) and a+b+c,=0a+b+c,=0

show that [[(a^(2)+b^(2))/(c),c,ca,(b^(2)+c^(2))/(a),ab,b,(a^(2)+b^(2))/(c)]]=4abc

In a ABC, prove that: (b^(2)-c^(2))cot A+(c^(2)-a^(2))cot B+(a^(2)-b^(2))cot C=0

In triangle ABC,a(b^(2)+c^(2))cos A+b(c^(2)+a^(2))cos B+c(a^(2)+b^(2))cos C=

In Delta ABC,If(b)/(c^(2)-a^(2))+(a)/(c^(2)-b^(2))=0 then

In Delta ABC, prove that (b^(2)-c^(2))/(a)cos A + (c^(2)-a^(2))/(b)cos B + (a^(2) - b^(2))/(c) cos C = 0

For any triangle ABC, prove that (b^(2)c^(2))cot A+(c^(2)a^(2))cot B+(a^(2)b^(2))cot C=

If a,b, and c are all different and if |{:(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3)):}| =0 Prove that abc =-1.

Prove that |[(a+b)^(2),ca,bc],[ca,(b+c)^(2),ab],[bc,ab,(c+a)^(2)]|=2abc(a+b+c)^(3)