Home
Class 12
MATHS
Prove that the value of each the follo...

Prove that the value of each the following determinants zero: `(a)|{:(a_(1),,la_(1)+mb_(1),,b_(1)),(a_(2),,la_(2)+mb_(2),,b_(2)),( a_(3),,la_(3)+mb_(3),,b_(3)):}|`

Text Solution

Verified by Experts

The correct Answer is:
-1

(a) Operating `C_(2)-lC_(1)-mC_(3).` we get the value of the determinant is 0
(b) Operating `C_(1) to C_(1) +C_(2)+C_(3)` we get the value of the determinant is 0
(C ) `Delta=|{:(log x,,log y,,log z),(log 2+log x,,log 2+logy,,log 2+log z),(log 3+logx,,log 3+log y,,log 3+logz):}|`
Operating `R_(3) to R_(3)-R_(1) " and " R_(2) to R_(2) -R_(1)` we get
`Delta =|{:(log x,,log y,,log z),(log 2,,log 2,,log 2),(log 3,,log 3,,log 3):}|`
`=0" "(:'R_(2) " and "R_(3) " are same ")`
(d) Using `C_(1) to C_(1)-C_(2)-4C_(3)` we have
`|{:(0,,(a^(x)-a^(-x))^(2),,1),(0,,(b^(y)-b^(-y))^(2),,1),(1,,(c^(z)-c^(-z))^(2),,1):}|=0`
(e ) Applying `C_(3)toC_(3)-C_(1)` we get
`|{:(sin^(2)(x+(3pi)/(2)),,sin^(2)(x+(5pi)/(2)),,sin(2x+5pi)sin(2pi)),(sin(x+(3pi)/(2)),,sin(x+(5pi)/(2)),,2cos (x+(5pi)/(2))sin(pi)),(sin(x-(3pi)/(2)),,sin(x-(5pi)/(2)),,2cos (x-(5pi)/(2))sin(pi)):}|=0`
`[:. ` all elements of `C_(3) ` are zero]
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the value of each the following determinants is zero: |[a_1,l a_1+mb_1,b_1],[a_2,l a_2+mb_2,b_2],[a_3,l a_3+m b_3,b_3]|

The determinant |(b_(1)+c_(1),c_(1)+a_(1),a_(1)+b_(1)),(b_(2)+c_(2),c_(2)+a_(2),a_(2)+b_(2)),(b_(3)+c_(3),c_(3)+a_(3),a_(3)+b_(3))|

if quad /_=[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

if Delta=det[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

If Delta is the value of the determinant |(a_(1), b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| then what is the value of the following determinant? |(pa_(1), b_(1), qc_(1)),(pa_(2), b_(2), qc_(2)),(pa_(3), b_(3),qc_(3))| (p ne 0 or 1, q ne 0 or 1)

consider the fourth -degree polynomial equation |{:(a_(1)+b_(1)x,,a_(1)x^(2)+b_(1),,c_(1)),(a_(2)+b_(2)x^(2),,a_(2)x^(2)+b_(2),,c_(2)),(a_(3)+b_(3)x^(2),,a_(3)x^(2)+b_(3),,c_(3)):}|=0 Without expanding the determinant find all the roots of the equation.

The value of the determinant Delta = |(1 + a_(1) b_(1),1 + a_(1) b_(2),1 + a_(1) b_(3)),(1 + a_(2) b_(1),1 + a_(2) b_(2),1 + a_(2) b_(3)),(1 + a_(3) b_(1) ,1 + a_(3) b_(2),1 + a_(3) b_(3))| , is

if w is a complex cube root to unity then value of Delta =|{:(a_(1)+b_(1)w,,a_(1)w^(2)+b_(1),,c_(1)+b_(1)bar(w)),(a_(2)+b_(2)w,,a_(2)w^(2)+b_(2),,c_(2)+b_(2)bar(w)),(a_(3)+b_(3)w,,a_(3)w^(2)+b_(3),,c_(3)+b_(3)bar(w)):}| is