Home
Class 12
MATHS
Show that |1 1+p1+p+q2 3+2p1+3p+2q3 6+3p...

Show that `|1 1+p1+p+q2 3+2p1+3p+2q3 6+3p 106 p+3q|=1.`

Text Solution

Verified by Experts

`" Let " Delta =|{:(1,,1+p,,1+p+q),(2,,3+2p,,1+3p+2q),(3,,6+3p,,1+6p+3q):}|`
Applying `C_(2) to C_(2) -pC " and C_(3) to C_(3) -qC_(1)` we get
`Delta= |{:(1,,1,,1+p),(2,,3,,1+3),(3,,6,,1+6p):}|`
`=|{:(1,,1,,1),(2,,3,,1),(3,,6,,1):}|" ""[Applying "C_(3)to C_(3) -pC_(3)"]"`
`=|{:(0,,0,,1),(1,,2,,1),(2,,5,,1):}|" ""[Applying "C_(1)to C_(1)-C_(3),C_(2)to C_(2)-"]"`
`=5-4=1" ""[Expanding ]"`
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: |11+p1+p+q23+2p1+3p+2q36+3p1+6p+3q|=1

Show that det[[1,1+p,1+p+q2,3+2p,1+3p+2q3,6+3p,1+6p+3q]]=

Using properties of determinants,prove the det[[1+p,1+p+q2,3+2p,1+3p+2q3,6+3p,1+6p+3q]]=1

Using properties of determinants.Prove that det[[2,3+2p,1+3p+2q3,6+3p,10+6p+3q]]=1

For any natural number p and q (i) p # q = p 3 + q 3 + 3 and p ∗ q = p 2 + q 2 + 2 and p $ q = | p − q | (ii) Max (p,q) = Maximum of (p,q) and Min (p and q) = Minimum of (p,q)The value of [(1 $ 2) # (3$ 4)]*[(5 $ 6) # (7 $ 8)] is :

If the lines p_1x+q_1y=1,p_2x+q_2y=1a n dp_3x+q_3y=1, be concurrent, show that the point (p_1, q_1),(p_2, q_2)a n d(p_3, q_3) are collinear.

If the lines p_1 x + q_1 y = 1, p_2 x + q_2 y=1 and p_3 x + q_3 y = 1 be concurrent, show that the points (p_1 , q_1), (p_2 , q_2 ) and (p_3 , q_3) are colliner.

If 2x+1=15;3y-2=16 if x=p(mod 5),y=q(mod 5) then the value of p, q are (i) p=2,q=3 (ii) p=2,q=1 (iii) p=3,q=2 (iv) p=4,q=1