Home
Class 12
MATHS
Solve |{:(x^(2)-1,,x^(2)+2x+1,,2x^(2)+3x...

Solve `|{:(x^(2)-1,,x^(2)+2x+1,,2x^(2)+3x+1),(2x^(2)+x-1,,2x^(2)+5x-3,,4x^(2)+4x-3),(6x^(2)-x-2,,6x^(2)-7x+2,,12x^(2)-5x-2):}| =0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation \[ \left| \begin{array}{ccc} x^2 - 1 & x^2 + 2x + 1 & 2x^2 + 3x + 1 \\ 2x^2 + x - 1 & 2x^2 + 5x - 3 & 4x^2 + 4x - 3 \\ 6x^2 - x - 2 & 6x^2 - 7x + 2 & 12x^2 - 5x - 2 \end{array} \right| = 0, \] we will follow these steps: ### Step 1: Factor the elements of the determinant We start by factoring the expressions in the determinant: - \(x^2 - 1 = (x - 1)(x + 1)\) - \(x^2 + 2x + 1 = (x + 1)^2\) - \(2x^2 + 3x + 1\) can be factored as \((2x + 1)(x + 1)\) - \(2x^2 + x - 1\) can be factored as \((2x - 1)(x + 1)\) - \(2x^2 + 5x - 3\) can be factored as \((2x + 3)(x - 1)\) - \(4x^2 + 4x - 3\) can be factored as \((4x + 3)(x - 1)\) - \(6x^2 - x - 2\) can be factored as \((3x + 2)(2x - 1)\) - \(6x^2 - 7x + 2\) can be factored as \((3x - 2)(2x - 1)\) - \(12x^2 - 5x - 2\) can be factored as \((3x + 2)(4x - 1)\) ### Step 2: Rewrite the determinant Now substituting the factors back into the determinant, we have: \[ \left| \begin{array}{ccc} (x - 1)(x + 1) & (x + 1)^2 & (2x + 1)(x + 1) \\ (2x - 1)(x + 1) & (2x + 3)(x - 1) & (4x + 3)(x - 1) \\ (3x + 2)(2x - 1) & (3x - 2)(2x - 1) & (3x + 2)(4x - 1) \end{array} \right| = 0 \] ### Step 3: Factor out common terms We can factor out the common terms from each row: - From the first row, factor out \((x + 1)\) - From the second row, factor out \((2x - 1)\) - From the third row, factor out \((3x + 2)\) Thus, we can rewrite the determinant as: \[ (x + 1)(2x - 1)(3x + 2) \cdot \left| \begin{array}{ccc} x - 1 & (x + 1) & (2x + 1) \\ (2x - 1) & (2x + 3) & (4x + 3) \\ (2x - 1) & (3x - 2) & (4x - 1) \end{array} \right| = 0 \] ### Step 4: Set each factor to zero Now, we can set each factor to zero: 1. \(x + 1 = 0 \Rightarrow x = -1\) 2. \(2x - 1 = 0 \Rightarrow x = \frac{1}{2}\) 3. \(3x + 2 = 0 \Rightarrow x = -\frac{2}{3}\) ### Step 5: Solve the remaining determinant We need to solve the remaining determinant: \[ \left| \begin{array}{ccc} x - 1 & (x + 1) & (2x + 1) \\ (2x - 1) & (2x + 3) & (4x + 3) \\ (2x - 1) & (3x - 2) & (4x - 1) \end{array} \right| = 0 \] After performing row operations and simplifying, we can find the roots of the remaining polynomial. ### Final Values of x The final values of \(x\) from all factors are: - \(x = -1\) - \(x = \frac{1}{2}\) - \(x = -\frac{2}{3}\)

To solve the determinant equation \[ \left| \begin{array}{ccc} x^2 - 1 & x^2 + 2x + 1 & 2x^2 + 3x + 1 \\ 2x^2 + x - 1 & 2x^2 + 5x - 3 & 4x^2 + 4x - 3 \\ 6x^2 - x - 2 & 6x^2 - 7x + 2 & 12x^2 - 5x - 2 ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: ,x^(2)-1,x^(2)+2x+1,2x^(2)+3x+12x^(2)+x-1,2x^(2)+5x-3,2x^(2)+4x-36x^(2)-x-2,6x^(2)-7x+2,12x^(2)-5x-2]|=0

((5x^(2) + 6x+ 7))/((2x^(2) + 3x +4))

Add 7x^(2)-4x+5,-3x^(2)+2x-1 and 5x^(2)-x+9

x ^ (3) + 5x ^ (2) -2x-24, x ^ (3) -4x ^ (2) + x + 6

(5x^(2)+6x+7)/(2x^(2)+3x+4)

List of the like terms in the following expression. (i) 4x^(4),-7x^(3),8x^(2),12x^(3),-9x^(4),-5x,4x^(3),12x^(2) (ii) 5xy,-3x^(2)y,2xy^(3),-2x^(2)y^(2),5x^(2)y,-3xy,6x^(2)y^(2)

12x - [3x^(2) + 5x^(2) - {7x^(2) - (4 - 3x - x^(3)) + 6x^(3)}-3x]

Simplify: (x^(2)-3x+2)(5x-2)-(3x^(2)+4x-5)(2x-1)

Solve (6x^2-5x-3)/(x^2-2x+6)le 4

Solve x(x+2)^(2)(x-1)^(5)(2x-3)(x-3)^(4)>=0